Data-driven Nonlinear Modal Analysis with Physics-constrained Deep Learning: Numerical and Experimental Study
- URL: http://arxiv.org/abs/2503.08952v1
- Date: Tue, 11 Mar 2025 23:03:55 GMT
- Title: Data-driven Nonlinear Modal Analysis with Physics-constrained Deep Learning: Numerical and Experimental Study
- Authors: Abdolvahhab Rostamijavanani, Shanwu Li, Yongchao Yang,
- Abstract summary: We study the effectiveness of Normal Modes (NNMs) in characterizing nonlinear dynamical systems.<n>Given the difficulty of obtaining closed-form models or equations for these real-world systems, we present a data-driven framework.<n>We assess the framework's ability to represent the system by analyzing its mode decomposition, reconstruction, and prediction accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To fully understand, analyze, and determine the behavior of dynamical systems, it is crucial to identify their intrinsic modal coordinates. In nonlinear dynamical systems, this task is challenging as the modal transformation based on the superposition principle that works well for linear systems is no longer applicable. To understand the nonlinear dynamics of a system, one of the main approaches is to use the framework of Nonlinear Normal Modes (NNMs) which attempts to provide an in-depth representation. In this research, we examine the effectiveness of NNMs in characterizing nonlinear dynamical systems. Given the difficulty of obtaining closed-form models or equations for these real-world systems, we present a data-driven framework that combines physics and deep learning to the nonlinear modal transformation function of NNMs from response data only. We assess the framework's ability to represent the system by analyzing its mode decomposition, reconstruction, and prediction accuracy using a nonlinear beam as an example. Initially, we perform numerical simulations on a nonlinear beam at different energy levels in both linear and nonlinear scenarios. Afterward, using experimental vibration data of a nonlinear beam, we isolate the first two NNMs. It is observed that the NNMs' frequency values increase as the excitation level of energy increases, and the configuration plots become more twisted (more nonlinear). In the experiment, the framework successfully decomposed the first two NNMs of the nonlinear beam using experimental free vibration data and captured the dynamics of the structure via prediction and reconstruction of some physical points of the beam.
Related papers
- Neural Contraction Metrics with Formal Guarantees for Discrete-Time Nonlinear Dynamical Systems [17.905596843865705]
Contraction metrics provide a powerful framework for analyzing stability, robustness, and convergence of various dynamical systems.
However, identifying these metrics for complex nonlinear systems remains an open challenge due to the lack of effective tools.
This paper develops verifiable contraction metrics for discrete scalable nonlinear systems.
arXiv Detail & Related papers (2025-04-23T21:27:32Z) - Generative System Dynamics in Recurrent Neural Networks [56.958984970518564]
We investigate the continuous time dynamics of Recurrent Neural Networks (RNNs)
We show that skew-symmetric weight matrices are fundamental to enable stable limit cycles in both linear and nonlinear configurations.
Numerical simulations showcase how nonlinear activation functions not only maintain limit cycles, but also enhance the numerical stability of the system integration process.
arXiv Detail & Related papers (2025-04-16T10:39:43Z) - Automated Global Analysis of Experimental Dynamics through Low-Dimensional Linear Embeddings [3.825457221275617]
We introduce a data-driven computational framework to derive low-dimensional linear models for nonlinear dynamical systems.
This framework enables global stability analysis through interpretable linear models that capture the underlying system structure.
Our method offers a promising pathway to analyze complex dynamical behaviors across fields such as physics, climate science, and engineering.
arXiv Detail & Related papers (2024-11-01T19:27:47Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Generalized Quadratic Embeddings for Nonlinear Dynamics using Deep
Learning [11.339982217541822]
We present a data-driven methodology for modeling the dynamics of nonlinear systems.
In this work, we propose using quadratic systems as the common structure, inspired by the lifting principle.
arXiv Detail & Related papers (2022-11-01T10:03:34Z) - Exploring Linear Feature Disentanglement For Neural Networks [63.20827189693117]
Non-linear activation functions, e.g., Sigmoid, ReLU, and Tanh, have achieved great success in neural networks (NNs)
Due to the complex non-linear characteristic of samples, the objective of those activation functions is to project samples from their original feature space to a linear separable feature space.
This phenomenon ignites our interest in exploring whether all features need to be transformed by all non-linear functions in current typical NNs.
arXiv Detail & Related papers (2022-03-22T13:09:17Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Learning Nonlinear Waves in Plasmon-induced Transparency [0.0]
We consider a recurrent neural network (RNN) approach to predict the complex propagation of nonlinear solitons in plasmon-induced transparency metamaterial systems.
We prove the prominent agreement of results in simulation and prediction by long short-term memory (LSTM) artificial neural networks.
arXiv Detail & Related papers (2021-07-31T21:21:44Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
We describe a method for mapping any finite nonlinear dynamical system to an infinite linear dynamical system (embedding)
We then explore an approach for approximating the resulting infinite linear system with finite linear systems (truncation)
arXiv Detail & Related papers (2020-12-12T00:01:10Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
We propose a neural dynamic mode decomposition for estimating a lift function based on neural networks.
With our proposed method, the forecast error is backpropagated through the neural networks and the spectral decomposition.
Our experiments demonstrate the effectiveness of our proposed method in terms of eigenvalue estimation and forecast performance.
arXiv Detail & Related papers (2020-12-11T08:34:26Z) - Coarse-Grained Nonlinear System Identification [0.0]
We introduce Coarse-Grained Dynamics, an efficient and universal parameterization of nonlinear system dynamics based on the Volterra series expansion.
We demonstrate the properties of this approach on a simple synthetic problem.
We also demonstrate this approach experimentally, showing that it identifies an accurate model of the nonlinear voltage to dynamics of a tungsten filament with less than a second of experimental data.
arXiv Detail & Related papers (2020-10-14T06:45:51Z) - DynNet: Physics-based neural architecture design for linear and
nonlinear structural response modeling and prediction [2.572404739180802]
In this study, a physics-based recurrent neural network model is designed that is able to learn the dynamics of linear and nonlinear multiple degrees of freedom systems.
The model is able to estimate a complete set of responses, including displacement, velocity, acceleration, and internal forces.
arXiv Detail & Related papers (2020-07-03T17:05:35Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.