Are ECGs enough? Deep learning classification of cardiac anomalies using only electrocardiograms
- URL: http://arxiv.org/abs/2503.08960v1
- Date: Tue, 11 Mar 2025 23:37:18 GMT
- Title: Are ECGs enough? Deep learning classification of cardiac anomalies using only electrocardiograms
- Authors: Joao D. S. Marques, Arlindo L. Oliveira,
- Abstract summary: We investigate the performance of multiple neural network architectures in order to assess the impact of various approaches.<n>By leveraging transfer learning, we analyze the extent to which we can improve learning efficiency and predictive performance on limited data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrocardiography (ECG) is an essential tool for diagnosing multiple cardiac anomalies: it provides valuable clinical insights, while being affordable, fast and available in many settings. However, in the current literature, the role of ECG analysis is often unclear: many approaches either rely on additional imaging modalities, such as Computed Tomography Pulmonary Angiography (CTPA), which may not always be available, or do not effectively generalize across different classification problems. Furthermore, the availability of public ECG datasets is limited and, in practice, these datasets tend to be small, making it essential to optimize learning strategies. In this study, we investigate the performance of multiple neural network architectures in order to assess the impact of various approaches. Moreover, we check whether these practices enhance model generalization when transfer learning is used to translate information learned in larger ECG datasets, such as PTB-XL and CPSC18, to a smaller, more challenging dataset for pulmonary embolism (PE) detection. By leveraging transfer learning, we analyze the extent to which we can improve learning efficiency and predictive performance on limited data. Code available at https://github.com/joaodsmarques/Are-ECGs-enough-Deep-Learning-Classifiers .
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Transfer Learning in ECG Diagnosis: Is It Effective? [1.534667887016089]
We conduct the first extensive empirical study on the effectiveness of transfer learning in ECG classification.
We compare fine-tuning performance with that of training from scratch, covering a variety of ECG datasets and deep neural networks.
We find that transfer learning exhibits better compatibility with convolutional neural networks than with recurrent neural networks.
arXiv Detail & Related papers (2024-02-03T04:27:26Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - Learning Through Guidance: Knowledge Distillation for Endoscopic Image
Classification [40.366659911178964]
Endoscopy plays a major role in identifying any underlying abnormalities within the gastrointestinal (GI) tract.
Deep learning, specifically Convolution Neural Networks (CNNs) which are designed to perform automatic feature learning without any prior feature engineering, has recently reported great benefits for GI endoscopy image analysis.
We investigate three KD-based learning frameworks, response-based, feature-based, and relation-based mechanisms, and introduce a novel multi-head attention-based feature fusion mechanism to support relation-based learning.
arXiv Detail & Related papers (2023-08-17T02:02:11Z) - Automated Cardiovascular Record Retrieval by Multimodal Learning between
Electrocardiogram and Clinical Report [28.608260758775316]
We introduce a novel approach to ECG interpretation, leveraging recent breakthroughs in Large Language Models (LLMs) and Vision-Transformer (ViT) models.
We propose an alternative method of automatically identifying the most similar clinical cases based on the input ECG data.
Our findings could serve as a crucial resource for providing diagnostic services in underdeveloped regions.
arXiv Detail & Related papers (2023-04-13T06:32:25Z) - ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning [20.465733855762835]
Electrocardiogram (ECG) monitoring is one of the most powerful technique of cardiovascular disease (CVD) early identification.
Classic rule-based algorithms are now completely outperformed by deep learning based methods.
We propose a multi-resolution model that can sustain high-resolution low-level semantic information throughout.
arXiv Detail & Related papers (2023-04-10T15:19:00Z) - Identifying Electrocardiogram Abnormalities Using a
Handcrafted-Rule-Enhanced Neural Network [18.859487271034336]
We introduce some rules into convolutional neural networks, which help present clinical knowledge to deep learning based ECG analysis.
Our new approach considerably outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2022-06-16T04:42:57Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.