Are ECGs enough? Deep learning classification of pulmonary embolism using electrocardiograms
- URL: http://arxiv.org/abs/2503.08960v2
- Date: Mon, 28 Jul 2025 14:58:39 GMT
- Title: Are ECGs enough? Deep learning classification of pulmonary embolism using electrocardiograms
- Authors: Joao D. S. Marques, Arlindo L. Oliveira,
- Abstract summary: Pulmonary embolism is a leading cause of out of hospital cardiac arrest that requires fast diagnosis.<n>While computed tomography pulmonary angiography is the standard diagnostic tool, it is not always accessible.<n>In this study, we investigate the performance of multiple neural networks in order to assess the impact of various approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pulmonary embolism is a leading cause of out of hospital cardiac arrest that requires fast diagnosis. While computed tomography pulmonary angiography is the standard diagnostic tool, it is not always accessible. Electrocardiography is an essential tool for diagnosing mul- tiple cardiac anomalies, as it is affordable, fast and available in many settings. However, the availability of public ECG datasets, specially for PE, is limited and, in practice, these datasets tend to be small, making it essential to optimize learning strategies. In this study, we investigate the performance of multiple neural networks in order to assess the impact of various approaches. Moreover, we check whether these practices enhance model generalization when transfer learning is used to translate infor- mation learned in larger ECG datasets, such as PTB-XL, CPSC18 and MedalCare-XL, to a smaller, more challenging dataset for PE. By lever- aging transfer learning, we analyze the extent to which we can improve learning efficiency and predictive performance on limited data. Code available at https://github.com/joaodsmarques/Are-ECGs-enough-Deep-Learning-Classifiers .
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
We propose a disease-specific attention-based deep learning model (DANet) for arrhythmia detection from short ECG recordings.
The novel idea is to introduce a soft-coding or hard-coding waveform enhanced module into existing deep neural networks.
For the soft-coding DANet, we also develop a learning framework combining self-supervised pre-training with two-stage supervised training.
arXiv Detail & Related papers (2024-07-25T13:27:10Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Transfer Learning in ECG Diagnosis: Is It Effective? [1.534667887016089]
We conduct the first extensive empirical study on the effectiveness of transfer learning in ECG classification.
We compare fine-tuning performance with that of training from scratch, covering a variety of ECG datasets and deep neural networks.
We find that transfer learning exhibits better compatibility with convolutional neural networks than with recurrent neural networks.
arXiv Detail & Related papers (2024-02-03T04:27:26Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - Learning Through Guidance: Knowledge Distillation for Endoscopic Image
Classification [40.366659911178964]
Endoscopy plays a major role in identifying any underlying abnormalities within the gastrointestinal (GI) tract.
Deep learning, specifically Convolution Neural Networks (CNNs) which are designed to perform automatic feature learning without any prior feature engineering, has recently reported great benefits for GI endoscopy image analysis.
We investigate three KD-based learning frameworks, response-based, feature-based, and relation-based mechanisms, and introduce a novel multi-head attention-based feature fusion mechanism to support relation-based learning.
arXiv Detail & Related papers (2023-08-17T02:02:11Z) - Automated Cardiovascular Record Retrieval by Multimodal Learning between
Electrocardiogram and Clinical Report [28.608260758775316]
We introduce a novel approach to ECG interpretation, leveraging recent breakthroughs in Large Language Models (LLMs) and Vision-Transformer (ViT) models.
We propose an alternative method of automatically identifying the most similar clinical cases based on the input ECG data.
Our findings could serve as a crucial resource for providing diagnostic services in underdeveloped regions.
arXiv Detail & Related papers (2023-04-13T06:32:25Z) - ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning [20.465733855762835]
Electrocardiogram (ECG) monitoring is one of the most powerful technique of cardiovascular disease (CVD) early identification.
Classic rule-based algorithms are now completely outperformed by deep learning based methods.
We propose a multi-resolution model that can sustain high-resolution low-level semantic information throughout.
arXiv Detail & Related papers (2023-04-10T15:19:00Z) - Identifying Electrocardiogram Abnormalities Using a
Handcrafted-Rule-Enhanced Neural Network [18.859487271034336]
We introduce some rules into convolutional neural networks, which help present clinical knowledge to deep learning based ECG analysis.
Our new approach considerably outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2022-06-16T04:42:57Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Encoding Cardiopulmonary Exercise Testing Time Series as Images for
Classification using Convolutional Neural Network [9.227037203895533]
Exercise testing has been available for more than a half-century and is a versatile tool for diagnostic and prognostic information of patients for a range of diseases.
In this work, we encode the time series as images using the Gramian Angular Field and Markov Transition Field.
We use it with a convolutional neural network and attention pooling approach for the classification of heart failure and metabolic syndrome patients.
arXiv Detail & Related papers (2022-04-26T16:49:06Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Momentum Contrastive Learning for Few-Shot COVID-19 Diagnosis from Chest
CT Images [41.73507451077361]
We propose a new deep learning algorithm for the automated diagnosis of COVID-19, which only requires a few samples for training.
We use contrastive learning to train an encoder which can capture expressive feature representations on large and publicly available lung datasets.
Our results demonstrate the superior performance of our model for the accurate diagnosis of COVID-19 based on chest CT images.
arXiv Detail & Related papers (2020-06-16T10:14:58Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.