Natural Humanoid Robot Locomotion with Generative Motion Prior
- URL: http://arxiv.org/abs/2503.09015v1
- Date: Wed, 12 Mar 2025 03:04:15 GMT
- Title: Natural Humanoid Robot Locomotion with Generative Motion Prior
- Authors: Haodong Zhang, Liang Zhang, Zhenghan Chen, Lu Chen, Yue Wang, Rong Xiong,
- Abstract summary: We propose a novel Generative Motion Prior (GMP) that provides fine-grained supervision for the task of humanoid robot locomotion.<n>We train a generative model offline to predict future natural reference motions for the robot based on a conditional variational auto-encoder.<n>During policy training, the generative motion prior serves as a frozen online motion generator, delivering precise and comprehensive supervision at the trajectory level.
- Score: 21.147249860051616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural and lifelike locomotion remains a fundamental challenge for humanoid robots to interact with human society. However, previous methods either neglect motion naturalness or rely on unstable and ambiguous style rewards. In this paper, we propose a novel Generative Motion Prior (GMP) that provides fine-grained motion-level supervision for the task of natural humanoid robot locomotion. To leverage natural human motions, we first employ whole-body motion retargeting to effectively transfer them to the robot. Subsequently, we train a generative model offline to predict future natural reference motions for the robot based on a conditional variational auto-encoder. During policy training, the generative motion prior serves as a frozen online motion generator, delivering precise and comprehensive supervision at the trajectory level, including joint angles and keypoint positions. The generative motion prior significantly enhances training stability and improves interpretability by offering detailed and dense guidance throughout the learning process. Experimental results in both simulation and real-world environments demonstrate that our method achieves superior motion naturalness compared to existing approaches. Project page can be found at https://sites.google.com/view/humanoid-gmp
Related papers
- StyleLoco: Generative Adversarial Distillation for Natural Humanoid Robot Locomotion [31.30409161905949]
StyleLoco is a novel framework for learning humanoid locomotion.
It combines the agility of reinforcement learning with the natural fluidity of human-like movements.
We demonstrate that StyleLoco enables humanoid robots to perform diverse locomotion tasks.
arXiv Detail & Related papers (2025-03-19T10:27:44Z) - Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation [34.65637397405485]
We present Human to Humanoid (H2O), a framework that enables real-time whole-body teleoperation of a humanoid robot with only an RGB camera.
We train a robust real-time humanoid motion imitator in simulation using these refined motions and transfer it to the real humanoid robot in a zero-shot manner.
To the best of our knowledge, this is the first demonstration to achieve learning-based real-time whole-body humanoid teleoperation.
arXiv Detail & Related papers (2024-03-07T12:10:41Z) - Expressive Whole-Body Control for Humanoid Robots [20.132927075816742]
We learn a whole-body control policy on a human-sized robot to mimic human motions as realistic as possible.
With training in simulation and Sim2Real transfer, our policy can control a humanoid robot to walk in different styles, shake hands with humans, and even dance with a human in the real world.
arXiv Detail & Related papers (2024-02-26T18:09:24Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - Naturalistic Robot Arm Trajectory Generation via Representation Learning [4.7682079066346565]
Integration of manipulator robots in household environments suggests a need for more predictable human-like robot motion.
One method of generating naturalistic motion trajectories is via imitation of human demonstrators.
This paper explores a self-supervised imitation learning method using an autoregressive neural network for an assistive drinking task.
arXiv Detail & Related papers (2023-09-14T09:26:03Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
We focus on how to transfer on two different robotic platforms the same kinematics modulation that humans adopt when manipulating delicate objects.
We choose to modulate the velocity profile adopted by the robots' end-effector, inspired by what humans do when transporting objects with different characteristics.
We exploit a novel Generative Adversarial Network architecture, trained with human kinematics examples, to generalize over them and generate new and meaningful velocity profiles.
arXiv Detail & Related papers (2022-03-29T15:03:05Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - Learning Bipedal Robot Locomotion from Human Movement [0.791553652441325]
We present a reinforcement learning based method for teaching a real world bipedal robot to perform movements directly from motion capture data.
Our method seamlessly transitions from training in a simulation environment to executing on a physical robot.
We demonstrate our method on an internally developed humanoid robot with movements ranging from a dynamic walk cycle to complex balancing and waving.
arXiv Detail & Related papers (2021-05-26T00:49:37Z) - Future Frame Prediction for Robot-assisted Surgery [57.18185972461453]
We propose a ternary prior guided variational autoencoder (TPG-VAE) model for future frame prediction in robotic surgical video sequences.
Besides content distribution, our model learns motion distribution, which is novel to handle the small movements of surgical tools.
arXiv Detail & Related papers (2021-03-18T15:12:06Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
Legged locomotion can dramatically expand the operational domains of robotics.
Conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes.
Here we present a radically robust controller for legged locomotion in challenging natural environments.
arXiv Detail & Related papers (2020-10-21T19:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.