A Hybrid Neural Network with Smart Skip Connections for High-Precision, Low-Latency EMG-Based Hand Gesture Recognition
- URL: http://arxiv.org/abs/2503.09041v1
- Date: Wed, 12 Mar 2025 04:01:32 GMT
- Title: A Hybrid Neural Network with Smart Skip Connections for High-Precision, Low-Latency EMG-Based Hand Gesture Recognition
- Authors: Hafsa Wazir, Jawad Ahmad, Muazzam A. Khan, Sana Ullah Jan, Fadia Ali Khan, Muhammad Shahbaz Khan,
- Abstract summary: This paper presents a new hybrid neural network named ConSGruNet for precise and efficient hand gesture recognition.<n>The proposed model boasts an accuracy of 99.7% in classifying 53 classes in just 25 milliseconds.
- Score: 0.2356141385409842
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Electromyography (EMG) is extensively used in key biomedical areas, such as prosthetics, and assistive and interactive technologies. This paper presents a new hybrid neural network named ConSGruNet for precise and efficient hand gesture recognition. The proposed model comprises convolutional neural networks with smart skip connections in conjunction with a Gated Recurrent Unit (GRU). The proposed model is trained on the complete Ninapro DB1 dataset. The proposed model boasts an accuracy of 99.7\% in classifying 53 classes in just 25 milliseconds. In addition to being fast, the proposed model is lightweight with just 3,946 KB in size. Moreover, the proposed model has also been evaluated for the reliability parameters, i.e., Cohen's kappa coefficient, Matthew's correlation coefficient, and confidence intervals. The close to ideal results of these parameters validate the models performance on unseen data.
Related papers
- Neural network modelling of kinematic and dynamic features for signature verification [9.143522881319294]
We present two approaches for estimating angular velocities, angular positions, and force torques.
The first approach involves using a physical UR5e robotic arm to reproduce a signature while capturing those parameters over time.
The second method, a cost effective approach, uses a neural network to estimate the same parameters.
arXiv Detail & Related papers (2024-11-26T15:17:24Z) - Hybrid Deep Convolutional Neural Networks Combined with Autoencoders And Augmented Data To Predict The Look-Up Table 2006 [2.082445711353476]
This study explores the development of a hybrid deep convolutional neural network (DCNN) model enhanced by autoencoders and data augmentation techniques.
By augmenting the original input features using three different autoencoder configurations, the model's predictive capabilities were significantly improved.
arXiv Detail & Related papers (2024-08-26T20:45:07Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
We have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification.
The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features.
Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
arXiv Detail & Related papers (2023-03-06T13:26:29Z) - NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration [66.22668336495175]
A lack of consideration for neural network calibration will not gain trust from humans.
We introduce the Neural Clamping Toolkit, the first open-source framework designed to help developers employ state-of-the-art model-agnostic calibrated models.
arXiv Detail & Related papers (2022-11-29T15:03:05Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - Supervised Training of Siamese Spiking Neural Networks with Earth's
Mover Distance [4.047840018793636]
This study adapts the highly-versatile siamese neural network model to the event data domain.
We introduce a supervised training framework for optimizing Earth's Mover Distance between spike trains with spiking neural networks (SNN)
arXiv Detail & Related papers (2022-02-20T00:27:57Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
This paper demonstrates how to construct ensembles of spiking neural networks producing state-of-the-art results.
We achieve classification accuracies of 98.71%, 100.0%, and 99.09%, on the MNIST, NMNIST and DVS Gesture datasets respectively.
We formalize spiking neural networks as GLM predictors, identifying a suitable representation for their target domain.
arXiv Detail & Related papers (2020-10-15T17:45:18Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
This paper is on highly accurate and highly efficient human pose estimation.
We re-analyze this design choice in the context of improving both the accuracy and the efficiency over the state-of-the-art.
Our model achieves state-of-the-art results on the MPII and LSP datasets.
arXiv Detail & Related papers (2020-02-25T18:51:51Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.