Neural network modelling of kinematic and dynamic features for signature verification
- URL: http://arxiv.org/abs/2411.17506v1
- Date: Tue, 26 Nov 2024 15:17:24 GMT
- Title: Neural network modelling of kinematic and dynamic features for signature verification
- Authors: Moises Diaz, Miguel A. Ferrer, Jose Juan Quintana, Adam Wolniakowski, Roman Trochimczuk, Konstantsin Miatliuk, Giovanna Castellano, Gennaro Vessio,
- Abstract summary: We present two approaches for estimating angular velocities, angular positions, and force torques.
The first approach involves using a physical UR5e robotic arm to reproduce a signature while capturing those parameters over time.
The second method, a cost effective approach, uses a neural network to estimate the same parameters.
- Score: 9.143522881319294
- License:
- Abstract: Online signature parameters, which are based on human characteristics, broaden the applicability of an automatic signature verifier. Although kinematic and dynamic features have previously been suggested, accurately measuring features such as arm and forearm torques remains challenging. We present two approaches for estimating angular velocities, angular positions, and force torques. The first approach involves using a physical UR5e robotic arm to reproduce a signature while capturing those parameters over time. The second method, a cost effective approach, uses a neural network to estimate the same parameters. Our findings demonstrate that a simple neural network model can extract effective parameters for signature verification. Training the neural network with the MCYT300 dataset and cross validating with other databases, namely, BiosecurID, Visual, Blind, OnOffSigDevanagari 75 and OnOffSigBengali 75 confirm the models generalization capability.
Related papers
- Using deep neural networks to detect non-analytically defined expert event labels in canoe sprint force sensor signals [3.1446633690603356]
This paper explores convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in terms of their ability to automatically predict paddle stroke events.
In our results, an RNN based on bidirectional gated recurrent units (BGRUs) turned out to be the most suitable model for paddle stroke detection.
arXiv Detail & Related papers (2024-07-11T10:59:11Z) - Data-driven discovery of self-similarity using neural networks [0.0]
We present a novel neural network-based approach that discovers self-similarity directly from observed data.
The presence of self-similar solutions in a physical problem signals that the governing law contains a function whose arguments are given by power-law exponents.
We train the neural network model using the observed data, and when the training is successful, we can extract the power exponents that characterize scale-transformation symmetries of the physical problem.
arXiv Detail & Related papers (2024-06-06T09:36:05Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - High-Robustness, Low-Transferability Fingerprinting of Neural Networks [78.2527498858308]
This paper proposes Characteristic Examples for effectively fingerprinting deep neural networks.
It features high-robustness to the base model against model pruning as well as low-transferability to unassociated models.
arXiv Detail & Related papers (2021-05-14T21:48:23Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates [11.580916951856256]
We present a time-dynamic approach to model uncertainties of instance segmentation networks.
We apply this approach to the detection of false positives and the estimation of prediction quality.
The proposed method only requires a readily trained neural network and video sequence input.
arXiv Detail & Related papers (2020-12-14T13:39:05Z) - Automated and Formal Synthesis of Neural Barrier Certificates for
Dynamical Models [70.70479436076238]
We introduce an automated, formal, counterexample-based approach to synthesise Barrier Certificates (BC)
The approach is underpinned by an inductive framework, which manipulates a candidate BC structured as a neural network, and a sound verifier, which either certifies the candidate's validity or generates counter-examples.
The outcomes show that we can synthesise sound BCs up to two orders of magnitude faster, with in particular a stark speedup on the verification engine.
arXiv Detail & Related papers (2020-07-07T07:39:42Z) - A Hybrid Objective Function for Robustness of Artificial Neural Networks
-- Estimation of Parameters in a Mechanical System [0.0]
We consider the task of estimating parameters of a mechanical vehicle model based on acceleration profiles.
We introduce a convolutional neural network architecture that is capable to predict the parameters for a family of vehicle models that differ in the unknown parameters.
arXiv Detail & Related papers (2020-04-16T15:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.