論文の概要: Differentiable Folding for Nearest Neighbor Model Optimization
- arxiv url: http://arxiv.org/abs/2503.09085v1
- Date: Wed, 12 Mar 2025 05:36:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:38:09.160984
- Title: Differentiable Folding for Nearest Neighbor Model Optimization
- Title(参考訳): 近傍モデル最適化のための微分フォルダリング
- Authors: Ryan K. Krueger, Sharon Aviran, David H. Mathews, Jeffrey Zuber, Max Ward,
- Abstract要約: Nearest NeighborモデルはRNA二次構造形成の$textitde facto$熱力学モデルである。
ここでは、$textitdifferentiable folding$の最近の進歩を活用して、パラメータ最適化の効率的でスケーラブルで柔軟な手段を考案する。
提案手法では,既存の基準値よりも優れたパラメータセットが得られた。
- 参考スコア(独自算出の注目度): 0.6291443816903801
- License:
- Abstract: The Nearest Neighbor model is the $\textit{de facto}$ thermodynamic model of RNA secondary structure formation and is a cornerstone of RNA structure prediction and sequence design. The current functional form (Turner 2004) contains $\approx13,000$ underlying thermodynamic parameters, and fitting these to both experimental and structural data is computationally challenging. Here, we leverage recent advances in $\textit{differentiable folding}$, a method for directly computing gradients of the RNA folding algorithms, to devise an efficient, scalable, and flexible means of parameter optimization that uses known RNA structures and thermodynamic experiments. Our method yields a significantly improved parameter set that outperforms existing baselines on all metrics, including an increase in the average predicted probability of ground-truth sequence-structure pairs for a single RNA family by over 23 orders of magnitude. Our framework provides a path towards drastically improved RNA models, enabling the flexible incorporation of new experimental data, definition of novel loss terms, large training sets, and even treatment as a module in larger deep learning pipelines. We make available a new database, RNAometer, with experimentally-determined stabilities for small RNA model systems.
- Abstract(参考訳): Nearest NeighborモデルはRNA二次構造形成の熱力学モデルであり、RNA構造予測と配列設計の基礎となっている。
現在の関数形式(Turner 2004)は、$\approx13,000$の熱力学パラメータを含み、これらを実験データと構造データの両方に適合させることは、計算的に困難である。
ここでは、RNAフォールディングアルゴリズムの勾配を直接計算する手法である$\textit{differentiable folding}$の最近の進歩を活用し、既知のRNA構造と熱力学実験を用いたパラメータ最適化の効率的でスケーラブルで柔軟な方法を考案する。
提案手法は, 1つのRNAファミリーに対して, 塩基配列-構造対の平均予測確率を23桁以上増加させるなど, 既存の基準値よりも大幅に向上したパラメータセットを生成する。
我々のフレームワークは、大幅に改良されたRNAモデルへの道を提供し、新しい実験データの柔軟な取り込み、新しい損失項の定義、大規模なトレーニングセット、さらにはより大きなディープラーニングパイプラインのモジュールとしての処理まで可能にします。
我々は、小さなRNAモデルシステムに対して実験的に決定された安定性を持つ新しいデータベースRNAometerを利用可能にしている。
関連論文リスト
- Comprehensive benchmarking of large language models for RNA secondary structure prediction [0.0]
RNA-LLMはRNA配列の大規模なデータセットを使用して、自己教師付き方法で、意味的に豊かな数値ベクトルで各RNA塩基をどう表現するかを学ぶ。
その中で、二次構造を予測することは、RNAの機能的機構を明らかにするための基本的な課題である。
本稿では,いくつかの事前学習されたRNA-LLMの総合的な実験解析を行い,それらを統合されたディープラーニングフレームワークにおけるRNA二次構造予測タスクと比較する。
論文 参考訳(メタデータ) (2024-10-21T17:12:06Z) - RNACG: A Universal RNA Sequence Conditional Generation model based on Flow-Matching [0.0]
本稿では,フローマッチングに基づくRNA配列設計のための汎用フレームワークであるRNACG(RNA Generator)を提案する。
1つのフレームワークでシーケンス生成を統一することにより、RNACGは複数のRNA設計パラダイムの統合を可能にする。
論文 参考訳(メタデータ) (2024-07-29T09:46:46Z) - RNAFlow: RNA Structure & Sequence Design via Inverse Folding-Based Flow Matching [7.600990806121113]
RNAFlowはタンパク質条件のRNA配列構造設計のためのフローマッチングモデルである。
そのデノナイジングネットワークはRNA逆フォールディングモデルと事前訓練されたRosettaFold2NAネットワークを統合し、RNA配列と構造を生成する。
論文 参考訳(メタデータ) (2024-05-29T05:10:25Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
本研究では,データ駆動型RNA設計パイプラインを体系的に構築することを目的とする。
我々は、ベンチマークデータセットを作成し、複雑なRNA第三次構造を表現するための包括的な構造モデリングアプローチを設計した。
RNA設計プロセスを容易にするために,塩基対を持つ抽出二次構造体を事前知識として組み込んだ。
論文 参考訳(メタデータ) (2023-01-25T17:19:49Z) - Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective [63.3632827588974]
RFoldは、与えられたシーケンスから最もよく一致するK-Rook解を予測する方法である。
RFoldは、最先端のアプローチよりも競争性能とおよそ8倍の推論効率を達成する。
論文 参考訳(メタデータ) (2022-12-02T16:34:56Z) - Accurate RNA 3D structure prediction using a language model-based deep learning approach [50.193512039121984]
RhoFold+はRNA言語モデルに基づくディープラーニング手法で、配列から単一鎖RNAの3次元構造を正確に予測する。
RhoFold+はRNA 3D構造予測のための完全に自動化されたエンドツーエンドパイプラインを提供する。
論文 参考訳(メタデータ) (2022-07-04T17:15:35Z) - Probabilistic Transformer: Modelling Ambiguities and Distributions for
RNA Folding and Molecule Design [38.46798525594529]
本稿では,最も成功したディープラーニングモデルの1つであるTransformerを強化するために,階層的な潜在分布を提案する。
本研究は,RNAの折り畳みにおける最先端の成果を生かした合成課題に対するアプローチの利点を示し,その特性に基づく分子設計における生成能力を示す。
論文 参考訳(メタデータ) (2022-05-27T12:11:38Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
本稿では,RNA配列設計に強化学習を適用した新しいベンチマークを提案する。このベンチマークでは,目的関数を配列の二次構造における自由エネルギーとして定義する。
本稿では,これらのアルゴリズムに対して行うアブレーション解析の結果と,バッチ間でのアルゴリズムの性能を示すグラフを示す。
論文 参考訳(メタデータ) (2021-11-05T02:54:06Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
本稿では,RNA二次構造予測のためのエンド・ツー・エンドのディープラーニングモデルであるE2Efoldを提案する。
E2Efoldの鍵となる考え方は、RNA塩基対行列を直接予測し、制約のないプログラミングを、制約を強制するための深いアーキテクチャのテンプレートとして使うことである。
ベンチマークデータセットに関する包括的な実験により、E2Efoldの優れた性能を実証する。
論文 参考訳(メタデータ) (2020-02-13T23:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。