Differentiable Folding for Nearest Neighbor Model Optimization
- URL: http://arxiv.org/abs/2503.09085v1
- Date: Wed, 12 Mar 2025 05:36:12 GMT
- Title: Differentiable Folding for Nearest Neighbor Model Optimization
- Authors: Ryan K. Krueger, Sharon Aviran, David H. Mathews, Jeffrey Zuber, Max Ward,
- Abstract summary: The Nearest Neighbor model is the $textitde facto$ thermodynamic model of RNA secondary structure formation.<n>Here, we leverage recent advances in $textitdifferentiable folding$ to devise an efficient, scalable, and flexible means of parameter optimization.<n>Our method yields a significantly improved parameter set that outperforms existing baselines on all metrics.
- Score: 0.6291443816903801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Nearest Neighbor model is the $\textit{de facto}$ thermodynamic model of RNA secondary structure formation and is a cornerstone of RNA structure prediction and sequence design. The current functional form (Turner 2004) contains $\approx13,000$ underlying thermodynamic parameters, and fitting these to both experimental and structural data is computationally challenging. Here, we leverage recent advances in $\textit{differentiable folding}$, a method for directly computing gradients of the RNA folding algorithms, to devise an efficient, scalable, and flexible means of parameter optimization that uses known RNA structures and thermodynamic experiments. Our method yields a significantly improved parameter set that outperforms existing baselines on all metrics, including an increase in the average predicted probability of ground-truth sequence-structure pairs for a single RNA family by over 23 orders of magnitude. Our framework provides a path towards drastically improved RNA models, enabling the flexible incorporation of new experimental data, definition of novel loss terms, large training sets, and even treatment as a module in larger deep learning pipelines. We make available a new database, RNAometer, with experimentally-determined stabilities for small RNA model systems.
Related papers
- A Comprehensive Benchmark for RNA 3D Structure-Function Modeling [1.3980986259786223]
We introduce a set of seven benchmarking datasets for RNA structure-function prediction.
Our library builds on the established Python library rnaglib, and offers easy data distribution and encoding.
We provide initial baseline results for all tasks using a graph neural network.
arXiv Detail & Related papers (2025-03-27T16:49:31Z) - Comprehensive benchmarking of large language models for RNA secondary structure prediction [0.0]
RNA-LLM uses large datasets of RNA sequences to learn, in a self-supervised way, how to represent each RNA base with a semantically rich numerical vector.
Among them, predicting the secondary structure is a fundamental task for uncovering RNA functional mechanisms.
We present a comprehensive experimental analysis of several pre-trained RNA-LLM, comparing them for the RNA secondary structure prediction task in a unified deep learning framework.
arXiv Detail & Related papers (2024-10-21T17:12:06Z) - RNAFlow: RNA Structure & Sequence Design via Inverse Folding-Based Flow Matching [7.600990806121113]
RNAFlow is a flow matching model for protein-conditioned RNA sequence-structure design.
Its denoising network integrates an RNA inverse folding model and a pre-trained RosettaFold2NA network for generation of RNA sequences and structures.
arXiv Detail & Related papers (2024-05-29T05:10:25Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - Deciphering RNA Secondary Structure Prediction: A Probabilistic K-Rook Matching Perspective [63.3632827588974]
We introduce RFold, a method that learns to predict the most matching K-Rook solution from the given sequence.
RFold achieves competitive performance and about eight times faster inference efficiency than state-of-the-art approaches.
arXiv Detail & Related papers (2022-12-02T16:34:56Z) - Accurate RNA 3D structure prediction using a language model-based deep learning approach [50.193512039121984]
RhoFold+ is an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences.<n>RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction.
arXiv Detail & Related papers (2022-07-04T17:15:35Z) - Probabilistic Transformer: Modelling Ambiguities and Distributions for
RNA Folding and Molecule Design [38.46798525594529]
We propose a hierarchical latent distribution to enhance one of the most successful deep learning models, the Transformer.
We show the benefits of our approach on a synthetic task, with state-of-the-art results in RNA folding, and demonstrate its generative capabilities on property-based molecule design.
arXiv Detail & Related papers (2022-05-27T12:11:38Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
In this paper, we propose an end-to-end deep learning model, called E2Efold, for RNA secondary structure prediction.
The key idea of E2Efold is to directly predict the RNA base-pairing matrix, and use an unrolled algorithm for constrained programming as the template for deep architectures to enforce constraints.
With comprehensive experiments on benchmark datasets, we demonstrate the superior performance of E2Efold.
arXiv Detail & Related papers (2020-02-13T23:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.