論文の概要: LocAgent: Graph-Guided LLM Agents for Code Localization
- arxiv url: http://arxiv.org/abs/2503.09089v1
- Date: Wed, 12 Mar 2025 05:55:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:41:03.409570
- Title: LocAgent: Graph-Guided LLM Agents for Code Localization
- Title(参考訳): LocAgent: コードローカライゼーションのためのグラフガイド型LLMエージェント
- Authors: Zhaoling Chen, Xiangru Tang, Gangda Deng, Fang Wu, Jialong Wu, Zhiwei Jiang, Viktor Prasanna, Arman Cohan, Xingyao Wang,
- Abstract要約: LocAgentは、グラフベースの表現を通じてコードのローカライゼーションに対処するフレームワークである。
細調整したQwen-2.5-Coder-Instruct-32Bモデルを用いて,SOTAプロプライエタリモデルと比較して,コストを大幅に削減した。
- 参考スコア(独自算出の注目度): 25.395102705800916
- License:
- Abstract: Code localization--identifying precisely where in a codebase changes need to be made--is a fundamental yet challenging task in software maintenance. Existing approaches struggle to efficiently navigate complex codebases when identifying relevant code sections. The challenge lies in bridging natural language problem descriptions with the appropriate code elements, often requiring reasoning across hierarchical structures and multiple dependencies. We introduce LocAgent, a framework that addresses code localization through graph-based representation. By parsing codebases into directed heterogeneous graphs, LocAgent creates a lightweight representation that captures code structures (files, classes, functions) and their dependencies (imports, invocations, inheritance), enabling LLM agents to effectively search and locate relevant entities through powerful multi-hop reasoning. Experimental results on real-world benchmarks demonstrate that our approach significantly enhances accuracy in code localization. Notably, our method with the fine-tuned Qwen-2.5-Coder-Instruct-32B model achieves comparable results to SOTA proprietary models at greatly reduced cost (approximately 86% reduction), reaching up to 92.7% accuracy on file-level localization while improving downstream GitHub issue resolution success rates by 12% for multiple attempts (Pass@10). Our code is available at https://github.com/gersteinlab/LocAgent.
- Abstract(参考訳): コードのローカライゼーション - コードベースの変更を行う必要がある場所を正確に特定すること。
既存のアプローチは、関連するコードセクションを特定する際に、複雑なコードベースを効率的にナビゲートするのに苦労している。
課題は、自然言語の問題記述を適切なコード要素でブリッジすることであり、しばしば階層構造と複数の依存関係の推論を必要とする。
グラフベース表現によるコードローカライゼーションに対処するフレームワークであるLocAgentを紹介する。
LocAgentは、コード構造(ファイル、クラス、関数)とその依存関係(インポート、呼び出し、継承)をキャプチャする軽量な表現を作成し、LLMエージェントが強力なマルチホップ推論を通じて関連エンティティを効果的に検索し、特定できるようにする。
実世界のベンチマーク実験の結果,コードローカライゼーションの精度が著しく向上することが示された。
特に、微調整されたQwen-2.5-Coder-Instruct-32Bモデルは、コストを大幅に削減し(約86%削減)、ファイルレベルのローカライゼーションで最大92.7%の精度でSOTAプロプライエタリモデルに匹敵する結果を得る。
私たちのコードはhttps://github.com/gersteinlab/LocAgent.comで公開されています。
関連論文リスト
- Scalable, Validated Code Translation of Entire Projects using Large Language Models [13.059046327936393]
大規模言語モデル(LLM)は、慣用的なコードを生成する能力のため、コード翻訳において有望であることを示す。
既存の作品では、100行以上のコードに対する翻訳の成功率が低下している。
私たちは、コードを独立した翻訳が可能な小さなコードフラグメントに分割する、トランスフォーメーションのためのモジュラーアプローチを開発しています。
我々は,最大6,600行のコードと369の関数に対して,信頼性の高いRustを一貫して生成できることを示し,平均73%の関数をI/O同値で検証した。
論文 参考訳(メタデータ) (2024-12-11T02:31:46Z) - CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models [106.11371409170818]
大規模言語モデル(LLM)は、生成されたコードを自己定義し、自律的に改善する機能を持つエージェントとして機能する。
コード生成プロセスの異なる段階における探索空間を効率的に探索するLLMエージェントのためのフレームワークであるCodeTreeを提案する。
具体的には、異なるコーディング戦略を明示的に探求し、対応するコーディングソリューションを生成し、その後、ソリューションを洗練するために統合されたツリー構造を採用しました。
論文 参考訳(メタデータ) (2024-11-07T00:09:54Z) - CodexGraph: Bridging Large Language Models and Code Repositories via Code Graph Databases [13.733229886643041]
大きな言語モデル(LLM)は、HumanEvalやMBPPのようなスタンドアロンのコードタスクに優れていますが、コードリポジトリ全体の処理に苦労しています。
類似性に基づく検索は複雑なタスクではリコールが低いことが多いが、手動ツールやAPIは通常タスク固有であり、専門家の知識を必要とする。
我々は,LLMエージェントをコードリポジトリから抽出したグラフデータベースインターフェースと統合するシステムであるCodexGraphを紹介する。
論文 参考訳(メタデータ) (2024-08-07T17:13:59Z) - LLM Agents Improve Semantic Code Search [6.047454623201181]
本稿では、ユーザプロンプトに情報を注入する検索拡張型エージェントのアプローチを提案する。
RAGを利用することで、エージェントはGitHubリポジトリから関連する詳細でユーザクエリを強化し、より情報的でコンテキスト整合性を高めます。
CodeSearchNetデータセットの実験結果は、RepoRiftが既存のメソッドを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-05T00:43:56Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective [85.48043537327258]
本稿では, MANGO (comMents As Natural loGic pivOts) を提案する。
その結果、MANGOは強いベースラインに基づいてコードパス率を大幅に改善することがわかった。
論理的なコメントの復号化戦略の堅牢性は、考えの連鎖よりも顕著に高い。
論文 参考訳(メタデータ) (2024-04-11T08:30:46Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
本稿では,大規模なソースコードプロジェクトの理解と維持を支援するファイルレベルのコード要約について検討する。
長いコードシーケンスを効果的に処理するための識別子対応スパース変換器であるSparseCoderを提案する。
論文 参考訳(メタデータ) (2024-01-26T09:23:27Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - deGraphCS: Embedding Variable-based Flow Graph for Neural Code Search [15.19181807445119]
ソースコードを変数ベースのフローグラフに変換する学習可能なDeGraph for Code Search(deGraphCSと呼ばれる)を提案する。
C言語で記述された41,152のコードスニペットを含む大規模なデータセットをGitHubから収集しています。
論文 参考訳(メタデータ) (2021-03-24T06:57:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。