論文の概要: Effective Feature Selection for Predicting Spreading Factor with ML in Large LoRaWAN-based Mobile IoT Networks
- arxiv url: http://arxiv.org/abs/2503.09170v1
- Date: Wed, 12 Mar 2025 08:58:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:35:18.091789
- Title: Effective Feature Selection for Predicting Spreading Factor with ML in Large LoRaWAN-based Mobile IoT Networks
- Title(参考訳): 大規模LoRaWANベースのモバイルIoTネットワークにおけるMLによる拡散係数予測のための効率的な特徴選択
- Authors: Aman Prakash, Nikumani Choudhury, Anakhi Hazarika, Alekhya Gorrela,
- Abstract要約: 本稿では機械学習(ML)技術を用いたLoRaWANネットワークにおける拡散係数(SF)予測の課題に対処する。
大規模な公開データセットでMLモデルのパフォーマンスを評価し、主要なLoRaWAN機能で最高の機能を調べました。
RSSIとSNRの組み合わせは最高の機能セットとして同定された。
- 参考スコア(独自算出の注目度): 0.5749787074942512
- License:
- Abstract: LoRaWAN is a low-power long-range protocol that enables reliable and robust communication. This paper addresses the challenge of predicting the spreading factor (SF) in LoRaWAN networks using machine learning (ML) techniques. Optimal SF allocation is crucial for optimizing data transmission in IoT-enabled mobile devices, yet it remains a challenging task due to the fluctuation in environment and network conditions. We evaluated ML model performance across a large publicly available dataset to explore the best feature across key LoRaWAN features such as RSSI, SNR, frequency, distance between end devices and gateways, and antenna height of the end device, further, we also experimented with 31 different combinations possible for 5 features. We trained and evaluated the model using k-nearest neighbors (k-NN), Decision Tree Classifier (DTC), Random Forest (RF), and Multinomial Logistic Regression (MLR) algorithms. The combination of RSSI and SNR was identified as the best feature set. The finding of this paper provides valuable information for reducing the overall cost of dataset collection for ML model training and extending the battery life of LoRaWAN devices. This work contributes to a more reliable LoRaWAN system by understanding the importance of specific feature sets for optimized SF allocation.
- Abstract(参考訳): LoRaWANは信頼性と堅牢な通信を可能にする低消費電力の長距離プロトコルである。
本稿では機械学習(ML)技術を用いたLoRaWANネットワークにおける拡散係数(SF)予測の課題に対処する。
IoT対応モバイルデバイスでのデータ転送を最適化するためには、最適なSFアロケーションが不可欠だが、環境やネットワーク条件の変動のため、依然として難しい課題である。
RSSI, SNR, 周波数, エンドデバイスとゲートウェイ間の距離, エンドデバイスのアンテナ高さなど, 主要なLoRaWAN機能にまたがる最高の機能を検討するために, 大規模な公開データセットを対象としたMLモデルの性能評価を行った。
我々はk-nearest neighbors(k-NN)、Decision Tree Classifier(DTC)、Random Forest(RF)、Multinomial Logistic Regression(MLR)アルゴリズムを用いてモデルを訓練・評価した。
RSSIとSNRの組み合わせは最高の機能セットとして同定された。
本論文は,機械学習モデルトレーニングにおけるデータセット収集の全体的なコスト削減と,LoRaWANデバイスのバッテリ寿命向上のための貴重な情報を提供する。
この研究は、最適化されたSFアロケーションのための特定の特徴セットの重要性を理解することによって、より信頼性の高いLoRaWANシステムに寄与する。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
本稿では,新しい基礎モデルのための統合型分割学習と超次元計算フレームワークを提案する。
この新しいアプローチは通信コスト、計算負荷、プライバシーリスクを低減し、Metaverseのリソース制約されたエッジデバイスに適している。
論文 参考訳(メタデータ) (2024-08-26T17:03:14Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split Federated Learning (SFL)は、分散機械学習(ML)における計算効率のパラダイムである。
SFLの課題は、特に無線チャネル上に展開する場合、送信されたモデルパラメータが相手のジャミングに感受性を持つことである。
これは、言語理解に不可欠である大規模言語モデル(LLM)における単語埋め込みパラメータに対して特に顕著である。
無線ネットワーク上でのLLM(R-SFLLM)を用いたレジリエンスSFLのための物理層フレームワークを開発した。
論文 参考訳(メタデータ) (2024-07-16T12:21:29Z) - Device Sampling and Resource Optimization for Federated Learning in Cooperative Edge Networks [17.637761046608]
フェデレーテッド・ラーニング(FedL)は、サーバによって定期的に集約されたローカルモデルをトレーニングすることで、機械学習(ML)をワーカーデバイスに分散させる。
FedLは、同時代の無線ネットワークの2つの重要な特徴を無視している: (i) ネットワークには異種通信/計算資源が含まれており、 (ii) デバイスのローカルデータ分布にかなりの重複がある可能性がある。
デバイス間オフロード(D2D)によって補完されるインテリジェントデバイスサンプリングにより,これらの要因を共同で考慮する新しい最適化手法を開発した。
論文 参考訳(メタデータ) (2023-11-07T21:17:59Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - FLCC: Efficient Distributed Federated Learning on IoMT over CSMA/CA [0.0]
フェデレートラーニング(FL)は、プライバシー保護のための有望なアプローチとして登場した。
本稿では,アドホックネットワーク上で遠隔医療システムを改善するアプリケーションにおけるFLの性能について検討する。
ネットワーク性能を評価するための指標として,1) 干渉を最小限に抑えながら伝送を成功させる確率,2) 精度と損失の点で分散FLモデルの性能を示す。
論文 参考訳(メタデータ) (2023-03-29T16:36:42Z) - IMDeception: Grouped Information Distilling Super-Resolution Network [7.6146285961466]
SISR(Single-Image-Super-Resolution)は、ディープラーニング手法の最近の進歩の恩恵を受けている古典的なコンピュータビジョン問題である。
本稿では,機能集約のためのIICモジュールの代替として,GPRM(Global Progressive Refinement Module)を提案する。
また,1秒あたりのパラメータ数や浮動小数点演算量(FLOPS)をさらに削減するために,GIDB(Grouped Information Distilling Blocks)を提案する。
実験の結果,提案したネットワークは,パラメータ数やFLOPSが限られているにもかかわらず,最先端モデルと同等に動作していることがわかった。
論文 参考訳(メタデータ) (2022-04-25T06:43:45Z) - Feature Extraction for Machine Learning-based Intrusion Detection in IoT
Networks [6.6147550436077776]
本稿では, 特徴量削減 (FR) と機械学習 (ML) の手法が, 様々なデータセットにまたがって一般化できるかどうかを明らかにすることを目的とする。
主成分分析(PCA)、自動エンコーダ(AE)、線形識別分析(LDA)の3つの特徴抽出(FE)アルゴリズムの検出精度を評価する。
論文 参考訳(メタデータ) (2021-08-28T23:52:18Z) - Device Sampling for Heterogeneous Federated Learning: Theory,
Algorithms, and Implementation [24.084053136210027]
グラフシーケンシャル畳み込みネットワーク(GCN)に基づくサンプリング手法を開発した。
提案手法は,全機器の5%以下をサンプリングしながら,訓練されたモデル精度と必要なリソース利用の両面で,fedl(federated learning)を実質的に上回っている。
論文 参考訳(メタデータ) (2021-01-04T05:59:50Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。