Long-Term Planning Around Humans in Domestic Environments with 3D Scene Graphs
- URL: http://arxiv.org/abs/2503.09173v1
- Date: Wed, 12 Mar 2025 09:00:45 GMT
- Title: Long-Term Planning Around Humans in Domestic Environments with 3D Scene Graphs
- Authors: Ermanno Bartoli, Dennis Rotondi, Kai O. Arras, Iolanda Leite,
- Abstract summary: Long-term planning for robots in domestic environments poses unique challenges due to the interactions between humans, objects, and spaces.<n>Recent advancements in trajectory planning have leveraged vision-language models to extract contextual information.<n>This paper presents a novel approach to trajectory planning that integrates human preferences, activities, and spatial context.
- Score: 1.2882480196517307
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Long-term planning for robots operating in domestic environments poses unique challenges due to the interactions between humans, objects, and spaces. Recent advancements in trajectory planning have leveraged vision-language models (VLMs) to extract contextual information for robots operating in real-world environments. While these methods achieve satisfying performance, they do not explicitly model human activities. Such activities influence surrounding objects and reshape spatial constraints. This paper presents a novel approach to trajectory planning that integrates human preferences, activities, and spatial context through an enriched 3D scene graph (3DSG) representation. By incorporating activity-based relationships, our method captures the spatial impact of human actions, leading to more context-sensitive trajectory adaptation. Preliminary results demonstrate that our approach effectively assigns costs to spaces influenced by human activities, ensuring that the robot trajectory remains contextually appropriate and sensitive to the ongoing environment. This balance between task efficiency and social appropriateness enhances context-aware human-robot interactions in domestic settings. Future work includes implementing a full planning pipeline and conducting user studies to evaluate trajectory acceptability.
Related papers
- 3HANDS Dataset: Learning from Humans for Generating Naturalistic Handovers with Supernumerary Robotic Limbs [64.99122701615151]
Supernumerary robotic limbs (SRLs) are robotic structures integrated closely with the user's body.<n>We present 3HANDS, a novel dataset of object handover interactions between a participant performing a daily activity and another participant enacting a hip-mounted SRL in a naturalistic manner.<n>We present three models that generate naturalistic handover trajectories, one that determines the appropriate handover endpoints, and a third that predicts the moment to initiate a handover.
arXiv Detail & Related papers (2025-03-06T17:23:55Z) - CoNav: A Benchmark for Human-Centered Collaborative Navigation [66.6268966718022]
We propose a collaborative navigation (CoNav) benchmark.
Our CoNav tackles the critical challenge of constructing a 3D navigation environment with realistic and diverse human activities.
We propose an intention-aware agent for reasoning both long-term and short-term human intention.
arXiv Detail & Related papers (2024-06-04T15:44:25Z) - Multimodal Sense-Informed Prediction of 3D Human Motions [16.71099574742631]
This work introduces a novel multi-modal sense-informed motion prediction approach, which conditions high-fidelity generation on two modal information.
The gaze information is regarded as the human intention, and combined with both motion and scene features, we construct a ternary intention-aware attention to supervise the generation.
On two real-world benchmarks, the proposed method achieves state-of-the-art performance both in 3D human pose and trajectory prediction.
arXiv Detail & Related papers (2024-05-05T12:38:10Z) - Deep Reinforcement Learning with Dynamic Graphs for Adaptive Informative Path Planning [22.48658555542736]
Key task in robotic data acquisition is planning paths through an initially unknown environment to collect observations.
We propose a novel deep reinforcement learning approach for adaptively replanning robot paths to map targets of interest in unknown 3D environments.
arXiv Detail & Related papers (2024-02-07T14:24:41Z) - Rearrange Indoor Scenes for Human-Robot Co-Activity [82.22847163761969]
We present an optimization-based framework for rearranging indoor furniture to accommodate human-robot co-activities better.
Our algorithm preserves the functional relations among furniture by integrating spatial and semantic co-occurrence extracted from SUNCG and ConceptNet.
Our experiments show that rearranged scenes provide an average of 14% more accessible space and 30% more objects to interact with.
arXiv Detail & Related papers (2023-03-10T03:03:32Z) - HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and
Sensing [1.3678064890824186]
The Human Assisted Robotic Planning and Sensing (HARPS) framework is presented for active semantic sensing and planning in human-robot teams.
This approach lets humans opportunistically impose model structure and extend the range of semantic soft data in uncertain environments.
Simulations of a UAV-enabled target search application in a large-scale partially structured environment show significant improvements in time and belief state estimates.
arXiv Detail & Related papers (2021-10-20T00:41:57Z) - Scene-aware Generative Network for Human Motion Synthesis [125.21079898942347]
We propose a new framework, with the interaction between the scene and the human motion taken into account.
Considering the uncertainty of human motion, we formulate this task as a generative task.
We derive a GAN based learning approach, with discriminators to enforce the compatibility between the human motion and the contextual scene.
arXiv Detail & Related papers (2021-05-31T09:05:50Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions [32.57882479132015]
We present a framework that fuses together the interpretability and flexibility of trajectory optimization (TO) with the predictive power of state-of-the-art human trajectory prediction models.
We demonstrate the efficacy of our approach in a multi-agent scenario whereby a robot is required to safely and efficiently navigate through a crowd of up to ten pedestrians.
arXiv Detail & Related papers (2020-12-02T08:43:36Z) - Long-term Human Motion Prediction with Scene Context [60.096118270451974]
We propose a novel three-stage framework for predicting human motion.
Our method first samples multiple human motion goals, then plans 3D human paths towards each goal, and finally predicts 3D human pose sequences following each path.
arXiv Detail & Related papers (2020-07-07T17:59:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.