Addressing pitfalls in implicit unobserved confounding synthesis using explicit block hierarchical ancestral sampling
- URL: http://arxiv.org/abs/2503.09194v2
- Date: Tue, 01 Apr 2025 00:19:11 GMT
- Title: Addressing pitfalls in implicit unobserved confounding synthesis using explicit block hierarchical ancestral sampling
- Authors: Xudong Sun, Alex Markham, Pratik Misra, Carsten Marr,
- Abstract summary: We show that state-of-the-art protocols have two distinct issues that hinder unbiased sampling from the complete space of causal models.<n>We propose an improved explicit modeling approach for unobserved confounding, leveraging block-hierarchical ancestral generation of ground truth causal graphs.
- Score: 1.7037247867649157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unbiased data synthesis is crucial for evaluating causal discovery algorithms in the presence of unobserved confounding, given the scarcity of real-world datasets. A common approach, implicit parameterization, encodes unobserved confounding by modifying the off-diagonal entries of the idiosyncratic covariance matrix while preserving positive definiteness. Within this approach, we identify that state-of-the-art protocols have two distinct issues that hinder unbiased sampling from the complete space of causal models: first, we give a detailed analysis of use of diagonally dominant constructions restricts the spectrum of partial correlation matrices; and second, the restriction of possible graphical structures when sampling bidirected edges, unnecessarily ruling out valid causal models. To address these limitations, we propose an improved explicit modeling approach for unobserved confounding, leveraging block-hierarchical ancestral generation of ground truth causal graphs. Algorithms for converting the ground truth DAG into ancestral graph is provided so that the output of causal discovery algorithms could be compared with. We draw connections between implicit and explicit parameterization, prove that our approach fully covers the space of causal models, including those generated by the implicit parameterization, thus enabling more robust evaluation of methods for causal discovery and inference.
Related papers
- Identifiable Multi-View Causal Discovery Without Non-Gaussianity [63.217175519436125]
We propose a novel approach to linear causal discovery in the framework of multi-view Structural Equation Models (SEM)
We prove the identifiability of all the parameters of the model without any further assumptions on the structure of the SEM other than it being acyclic.
The proposed methodology is validated through simulations and application on real data, where it enables the estimation of causal graphs between brain regions.
arXiv Detail & Related papers (2025-02-27T14:06:14Z) - Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
We introduce a robust post-integrated inference (PII) method that adjusts for latent heterogeneity using negative control outcomes.
Our method extends to projected direct effect estimands, accounting for hidden mediators, confounders, and moderators.
The proposed doubly robust estimators are consistent and efficient under minimal assumptions and potential misspecification.
arXiv Detail & Related papers (2024-10-07T12:52:38Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Hybrid Top-Down Global Causal Discovery with Local Search for Linear and Nonlinear Additive Noise Models [2.0738462952016232]
Methods based on functional causal models can identify a unique graph, but suffer from the curse of dimensionality or impose strong parametric assumptions.<n>We propose a novel hybrid approach for global causal discovery in observational data that leverages local causal substructures.<n>We provide theoretical guarantees for correctness and worst-case time complexities, with empirical validation on synthetic data.
arXiv Detail & Related papers (2024-05-23T12:28:16Z) - BayesDAG: Gradient-Based Posterior Inference for Causal Discovery [30.027520859604955]
We introduce a scalable causal discovery framework based on a combination of Markov Chain Monte Carlo and Variational Inference.
Our approach directly samples DAGs from the posterior without requiring any DAG regularization.
We derive a novel equivalence to the permutation-based DAG learning, which opens up possibilities of using any relaxed estimator defined over permutations.
arXiv Detail & Related papers (2023-07-26T02:34:13Z) - Causal Discovery with Score Matching on Additive Models with Arbitrary
Noise [37.13308785728276]
Causal discovery methods are intrinsically constrained by the set of assumptions needed to ensure structure identifiability.
In this paper we show the shortcomings of inference under this hypothesis, analyzing the risk of edge inversion under violation of Gaussianity of the noise terms.
We propose a novel method for inferring the topological ordering of the variables in the causal graph, from data generated according to an additive non-linear model with a generic noise distribution.
This leads to NoGAM, a causal discovery algorithm with a minimal set of assumptions and state of the art performance, experimentally benchmarked on synthetic data.
arXiv Detail & Related papers (2023-04-06T17:50:46Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Identification of Latent Variables From Graphical Model Residuals [0.0]
We present a novel method to control for the latent space when estimating a DAG by iteratively deriving proxies for the latent space from the residuals of the inferred model.
We show that any improvement of prediction of an outcome is intrinsically capped and cannot rise beyond a certain limit as compared to the confounded model.
arXiv Detail & Related papers (2021-01-07T02:28:49Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
We introduce Causal Structure Learning (CASTLE) regularization and propose to regularize a neural network by jointly learning the causal relationships between variables.
CASTLE efficiently reconstructs only the features in the causal DAG that have a causal neighbor, whereas reconstruction-based regularizers suboptimally reconstruct all input features.
arXiv Detail & Related papers (2020-09-28T09:49:38Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.