論文の概要: Large-scale Regional Traffic Signal Control Based on Single-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2503.09252v1
- Date: Wed, 12 Mar 2025 10:51:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:38:08.185009
- Title: Large-scale Regional Traffic Signal Control Based on Single-Agent Reinforcement Learning
- Title(参考訳): シングルエージェント強化学習に基づく大規模地域交通信号制御
- Authors: Qiang Li, Jin Niu, Qin Luo, Lina Yu,
- Abstract要約: 本稿では,単一エージェント強化学習(RL)に基づく地域交通信号制御モデルを提案する。
このモデルは、広域交通渋滞を緩和し、総走行時間を最小化することを目的として、広範囲にわたる交通信号を調整することができる。
SUMO交通シミュレーションソフトウェアを用いて実験を行った。
- 参考スコア(独自算出の注目度): 5.1129002613887105
- License:
- Abstract: In the context of global urbanization and motorization, traffic congestion has become a significant issue, severely affecting the quality of life, environment, and economy. This paper puts forward a single-agent reinforcement learning (RL)-based regional traffic signal control (TSC) model. Different from multi - agent systems, this model can coordinate traffic signals across a large area, with the goals of alleviating regional traffic congestion and minimizing the total travel time. The TSC environment is precisely defined through specific state space, action space, and reward functions. The state space consists of the current congestion state, which is represented by the queue lengths of each link, and the current signal phase scheme of intersections. The action space is designed to select an intersection first and then adjust its phase split. Two reward functions are meticulously crafted. One focuses on alleviating congestion and the other aims to minimize the total travel time while considering the congestion level. The experiments are carried out with the SUMO traffic simulation software. The performance of the TSC model is evaluated by comparing it with a base case where no signal-timing adjustments are made. The results show that the model can effectively control congestion. For example, the queuing length is significantly reduced in the scenarios tested. Moreover, when the reward is set to both alleviate congestion and minimize the total travel time, the average travel time is remarkably decreased, which indicates that the model can effectively improve traffic conditions. This research provides a new approach for large-scale regional traffic signal control and offers valuable insights for future urban traffic management.
- Abstract(参考訳): グローバルな都市化とモーター化の文脈では、交通渋滞が重大な問題となり、生活の質、環境、経済に深刻な影響を与えている。
本稿では,単一エージェント強化学習(RL)に基づく地域交通信号制御(TSC)モデルを提案する。
マルチエージェントシステムと異なり、このモデルでは、地域交通渋滞を緩和し、総走行時間を最小化することを目的として、広範囲にわたる交通信号を調整することができる。
TSC環境は、特定の状態空間、アクション空間、報酬関数によって正確に定義される。
状態空間は、各リンクのキュー長で表される現在の混雑状態と、交差点の現在の信号位相スキームから構成される。
アクション空間は、まず交差点を選択し、その位相分割を調整するように設計されている。
2つの報酬関数は細心の注意を払って作成される。
1つは渋滞緩和に焦点を当て、もう1つは渋滞レベルを考慮して旅行時間全体の最小化を目的としている。
実験はSUMO交通シミュレーションソフトウェアを用いて行った。
TSCモデルの性能は、信号刺激調整を行わないベースケースと比較して評価する。
その結果,モデルが混雑を効果的に制御できることが示唆された。
例えば、キューの長さは、テストされたシナリオで大幅に減少します。
さらに、渋滞を緩和し、総走行時間を最小化する報奨が設定されると、平均走行時間が著しく減少し、モデルが交通条件を効果的に改善できることを示す。
本研究は,広域交通信号制御の新しいアプローチを提供し,今後の都市交通管理に有用な知見を提供する。
関連論文リスト
- Learning Traffic Anomalies from Generative Models on Real-Time Observations [49.1574468325115]
トラフィックデータの複雑な空間的および時間的依存関係をキャプチャするために,時空間生成適応ネットワーク(STGAN)フレームワークを用いる。
スウェーデンのヨーテボリで2020年に収集された42台の交通カメラから、STGANをリアルタイムで分単位でリアルタイムで観測する。
その結果, 精度が高く, 偽陽性率の低い交通異常を効果的に検出できることが示唆された。
論文 参考訳(メタデータ) (2025-02-03T14:23:23Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent
Coordination Method [9.761657423863706]
交通信号の効率的な制御 (TSC) は, 都市交通渋滞の低減に最も有用な方法の1つである。
強化学習(RL)手法を適用した最近の取り組みは、トラフィック状態を信号決定にリアルタイムでマッピングすることでポリシーをクエリすることができる。
本稿では,適応的,リアルタイム,ネットワークレベルのTSCを満足する,EMCに基づくオンライン計画手法を提案する。
論文 参考訳(メタデータ) (2023-06-15T04:08:09Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - Deep Reinforcement Learning to Maximize Arterial Usage during Extreme
Congestion [4.934817254755007]
本稿では,過度の混雑中における多車線高速道路の交通渋滞を軽減するための深層強化学習(DRL)手法を提案する。
エージェントは、渋滞した高速道路交通に対する適応的な抑止戦略を学ぶために訓練される。
エージェントは、急激な混雑時の非作用と比較して平均交通速度を21%向上させることができる。
論文 参考訳(メタデータ) (2023-05-16T16:53:27Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。