Neural Normalized Cut: A Differential and Generalizable Approach for Spectral Clustering
- URL: http://arxiv.org/abs/2503.09260v1
- Date: Wed, 12 Mar 2025 11:00:16 GMT
- Title: Neural Normalized Cut: A Differential and Generalizable Approach for Spectral Clustering
- Authors: Wei He, Shangzhi Zhang, Chun-Guang Li, Xianbiao Qi, Rong Xiao, Jun Guo,
- Abstract summary: We propose a scalable and generalizable approach, called Neural Normalized Cut (NeuNcut) to learn the clustering membership for spectral clustering directly.<n>We conduct extensive experiments on both synthetic data and benchmark datasets and experimental results validate the effectiveness and the superiority of our approach.
- Score: 13.251662213010075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spectral clustering, as a popular tool for data clustering, requires an eigen-decomposition step on a given affinity to obtain the spectral embedding. Nevertheless, such a step suffers from the lack of generalizability and scalability. Moreover, the obtained spectral embeddings can hardly provide a good approximation to the ground-truth partition and thus a k-means step is adopted to quantize the embedding. In this paper, we propose a simple yet effective scalable and generalizable approach, called Neural Normalized Cut (NeuNcut), to learn the clustering membership for spectral clustering directly. In NeuNcut, we properly reparameterize the unknown cluster membership via a neural network, and train the neural network via stochastic gradient descent with a properly relaxed normalized cut loss. As a result, our NeuNcut enjoys a desired generalization ability to directly infer clustering membership for out-of-sample unseen data and hence brings us an efficient way to handle clustering task with ultra large-scale data. We conduct extensive experiments on both synthetic data and benchmark datasets and experimental results validate the effectiveness and the superiority of our approach. Our code is available at: https://github.com/hewei98/NeuNcut.
Related papers
- Nonlinear subspace clustering by functional link neural networks [20.972039615938193]
Subspace clustering based on a feed-forward neural network has been demonstrated to provide better clustering accuracy than some advanced subspace clustering algorithms.
We employ a functional link neural network to transform data samples into a nonlinear domain.
We introduce a convex combination subspace clustering scheme, which combines a linear subspace clustering method with the functional link neural network subspace clustering approach.
arXiv Detail & Related papers (2024-02-03T06:01:21Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - A Scalable Walsh-Hadamard Regularizer to Overcome the Low-degree
Spectral Bias of Neural Networks [79.28094304325116]
Despite the capacity of neural nets to learn arbitrary functions, models trained through gradient descent often exhibit a bias towards simpler'' functions.
We show how this spectral bias towards low-degree frequencies can in fact hurt the neural network's generalization on real-world datasets.
We propose a new scalable functional regularization scheme that aids the neural network to learn higher degree frequencies.
arXiv Detail & Related papers (2023-05-16T20:06:01Z) - Learning Neural Eigenfunctions for Unsupervised Semantic Segmentation [12.91586050451152]
Spectral clustering is a theoretically grounded solution to it where the spectral embeddings for pixels are computed to construct distinct clusters.
Current approaches still suffer from inefficiencies in spectral decomposition and inflexibility in applying them to the test data.
This work addresses these issues by casting spectral clustering as a parametric approach that employs neural network-based eigenfunctions to produce spectral embeddings.
In practice, the neural eigenfunctions are lightweight and take the features from pre-trained models as inputs, improving training efficiency and unleashing the potential of pre-trained models for dense prediction.
arXiv Detail & Related papers (2023-04-06T03:14:15Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Improving Spectral Clustering Using Spectrum-Preserving Node Reduction [1.52292571922932]
We use spectrum-preserving node reduction to accelerate eigen-decomposition and generate concise representations of data sets.
The experimental results show dramatically improved clustering performance when compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-10-24T01:43:12Z) - Variational Auto Encoder Gradient Clustering [0.0]
Clustering using deep neural network models have been extensively studied in recent years.
This article investigates how probability function gradient ascent can be used to process data in order to achieve better clustering.
We propose a simple yet effective method for investigating suitable number of clusters for data, based on the DBSCAN clustering algorithm.
arXiv Detail & Related papers (2021-05-11T08:00:36Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
We study the statistical and computational properties of a network Lasso method for local graph clustering.
The clusters delivered by nLasso can be characterized elegantly via network flows between cluster boundary and seed nodes.
arXiv Detail & Related papers (2020-04-25T17:52:05Z) - OSLNet: Deep Small-Sample Classification with an Orthogonal Softmax
Layer [77.90012156266324]
This paper aims to find a subspace of neural networks that can facilitate a large decision margin.
We propose the Orthogonal Softmax Layer (OSL), which makes the weight vectors in the classification layer remain during both the training and test processes.
Experimental results demonstrate that the proposed OSL has better performance than the methods used for comparison on four small-sample benchmark datasets.
arXiv Detail & Related papers (2020-04-20T02:41:01Z) - Robust Classification of High-Dimensional Spectroscopy Data Using Deep
Learning and Data Synthesis [0.5801044612920815]
A novel application of a locally-connected neural network (NN) for the binary classification of spectroscopy data is proposed.
A two-step classification process is presented as an alternative to the binary and one-class classification paradigms.
arXiv Detail & Related papers (2020-03-26T11:33:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.