論文の概要: Noise2Score3D: Tweedie's Approach for Unsupervised Point Cloud Denoising
- arxiv url: http://arxiv.org/abs/2503.09283v1
- Date: Wed, 12 Mar 2025 11:28:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:39:13.645660
- Title: Noise2Score3D: Tweedie's Approach for Unsupervised Point Cloud Denoising
- Title(参考訳): Noise2Score3D:Tweedie氏の非教師なしポイントクラウドDenoisingへのアプローチ
- Authors: Xiangbin Wei,
- Abstract要約: ノイズ2Score3Dはノイズデータから直接基礎となる点雲分布のスコア関数を学習する。
本手法は,既存の教師なし手法の反復処理を回避するため,単一ステップでデノナイズを行う。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Building on recent advances in Bayesian statistics and image denoising, we propose Noise2Score3D, a fully unsupervised framework for point cloud denoising. Noise2Score3D learns the score function of the underlying point cloud distribution directly from noisy data, eliminating the need for clean data during training. Using Tweedie's formula, our method performs denoising in a single step, avoiding the iterative processes used in existing unsupervised methods, thus improving both accuracy and efficiency. Additionally, we introduce Total Variation for Point Clouds as a denoising quality metric, which allows for the estimation of unknown noise parameters. Experimental results demonstrate that Noise2Score3D achieves state-of-the-art performance on standard benchmarks among unsupervised learning methods in Chamfer distance and point-to-mesh metrics. Noise2Score3D also demonstrates strong generalization ability beyond training datasets. Our method, by addressing the generalization issue and challenge of the absence of clean data in learning-based methods, paves the way for learning-based point cloud denoising methods in real-world applications.
- Abstract(参考訳): ベイズ統計と画像復号化の最近の進歩に基づいて、我々は、ポイントクラウド復号化のための完全に教師なしのフレームワークであるNoss2Score3Dを提案する。
Noise2Score3Dは、ノイズの多いデータから直接、基礎となるポイントクラウドのスコア関数を学習し、トレーニング中のクリーンなデータを必要としない。
Tweedieの法則を用いることで,既存の教師なし手法の反復的処理を回避し,精度と効率を両立させる。
さらに、未知の雑音パラメータを推定できる音質指標として、点雲のトータル変分を導入する。
実験結果から,Chamfer 距離とpoint-to-mesh 測定値における教師なし学習手法の標準ベンチマークにおいて,Noss2Score3D が最先端の性能を達成することが示された。
Noise2Score3Dはまた、トレーニングデータセットを超えて強力な一般化能力を示している。
本手法は,学習ベース手法にクリーンなデータがないという一般化問題と課題に対処することで,実世界のアプリケーションにおける学習ベースポイントクラウドデノナイズ手法の道を開くものである。
関連論文リスト
- Denoising-Aware Contrastive Learning for Noisy Time Series [35.97130925600067]
時系列自己教師型学習(SSL)は、ラベルへの依存を軽減するために事前トレーニングのためにラベル付きデータを活用することを目的としている。
本稿では,表現中の雑音を軽減し,各サンプルに対して適切な復調法を自動選択するDenoising-Aware contrastive Learning (DECL)を提案する。
論文 参考訳(メタデータ) (2024-06-07T04:27:32Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
本稿では,画像センサ異常検出におけるラベルレベルのノイズを初めて考察する。
本稿では,メモリベースの非教師付きAD手法であるSoftPatchを提案する。
既存の手法と比較して、SoftPatchは通常のデータの強力なモデリング能力を維持し、コアセットにおける過信問題を軽減する。
論文 参考訳(メタデータ) (2024-03-21T08:49:34Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Fine tuning Pre trained Models for Robustness Under Noisy Labels [34.68018860186995]
トレーニングデータセットにノイズの多いラベルが存在することは、機械学習モデルのパフォーマンスに大きな影響を及ぼす可能性がある。
我々は、事前学習されたモデルの事前知識を頑健かつ効率的に伝達するTURNと呼ばれる新しいアルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-10-24T20:28:59Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - Learning Signed Distance Functions from Noisy 3D Point Clouds via Noise
to Noise Mapping [52.25114448281418]
3Dポイントクラウドから署名付き距離関数(SDF)を学習することは、3Dコンピュータビジョンにおいて重要な課題である。
クリーンポイントクラウドや地上の真実管理を必要とせず,ノイズからノイズへのマッピングを通じてSDFを学習することを提案する。
我々の新しい特徴はノイズ・ト・ノイズマッピングにあり、1つの物体やシーンの高度に正確なSDFを、その多重または単一ノイズの点雲観測から推測することができる。
論文 参考訳(メタデータ) (2023-06-02T09:52:04Z) - PD-Flow: A Point Cloud Denoising Framework with Normalizing Flows [20.382995180671205]
ポイント・クラウド・デノゲーション(Point cloud denoising)は、ノイズや外れ値によって破損した生の観測からクリーン・ポイント・クラウドを復元することを目的としている。
本稿では,正規化フローとノイズ分散手法を取り入れた,ディープラーニングに基づく新しいDenoisingモデルを提案する。
論文 参考訳(メタデータ) (2022-03-11T14:17:58Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
本稿では,最先端のデノナイジング性能を実現するために,教師なしの実用的なデノナイジング手法を提案する。
本手法では, 1つのノイズ画像と1つのノイズモデルしか必要とせず, 実際の生画像に容易にアクセス可能である。
実世界のアプリケーションにおける生画像復調性能を評価するため,500シーンのシーンを含む高品質な生画像データセットSenseNoise-500を構築した。
論文 参考訳(メタデータ) (2021-11-29T07:22:53Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
合成データで訓練されたデノイザーは、未知のノイズの多様性に対処できないことが多い。
従来の画像ベース手法は、ビデオデノイザに直接適用した場合、ノイズが過度に収まる。
本稿では,これらの課題に対処する上で有効な,ビデオ・デノベーション・ネットワークの汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-07T07:19:48Z) - Non-Local Part-Aware Point Cloud Denoising [55.50360085086123]
本稿では,点群を識別する非局所部分認識ディープニューラルネットワークを提案する。
グラフアテンションモジュールでカスタマイズした非局所学習ユニット(NLU)を設計し、非局所意味論的特徴を適応的にキャプチャする。
雑音発生性能を向上させるため,ノイズ特性をノイズ入力から段階的に抽出するために,一連のNLUをカスケードする。
論文 参考訳(メタデータ) (2020-03-14T13:51:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。