Steering No-Regret Agents in MFGs under Model Uncertainty
- URL: http://arxiv.org/abs/2503.09309v2
- Date: Mon, 14 Apr 2025 17:28:22 GMT
- Title: Steering No-Regret Agents in MFGs under Model Uncertainty
- Authors: Leo Widmer, Jiawei Huang, Niao He,
- Abstract summary: We study the design of steering rewards in Mean-Field Games with density-independent transitions.<n>We establish sub-linear regret guarantees for the cumulative gaps between the agents' behaviors and the desired ones.<n>Our work presents an effective framework for steering agents behaviors in large-population systems under uncertainty.
- Score: 19.845081182511713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incentive design is a popular framework for guiding agents' learning dynamics towards desired outcomes by providing additional payments beyond intrinsic rewards. However, most existing works focus on a finite, small set of agents or assume complete knowledge of the game, limiting their applicability to real-world scenarios involving large populations and model uncertainty. To address this gap, we study the design of steering rewards in Mean-Field Games (MFGs) with density-independent transitions, where both the transition dynamics and intrinsic reward functions are unknown. This setting presents non-trivial challenges, as the mediator must incentivize the agents to explore for its model learning under uncertainty, while simultaneously steer them to converge to desired behaviors without incurring excessive incentive payments. Assuming agents exhibit no(-adaptive) regret behaviors, we contribute novel optimistic exploration algorithms. Theoretically, we establish sub-linear regret guarantees for the cumulative gaps between the agents' behaviors and the desired ones. In terms of the steering cost, we demonstrate that our total incentive payments incur only sub-linear excess, competing with a baseline steering strategy that stabilizes the target policy as an equilibrium. Our work presents an effective framework for steering agents behaviors in large-population systems under uncertainty.
Related papers
- Learning to Steer Markovian Agents under Model Uncertainty [23.603487812521657]
We study how to design additional rewards to steer multi-agent systems towards desired policies.<n>Motivated by the limitation of existing works, we consider a new category of learning dynamics called emphMarkovian agents<n>We learn a emphhistory-dependent steering strategy to handle the inherent model uncertainty about the agents' learning dynamics.
arXiv Detail & Related papers (2024-07-14T14:01:38Z) - Estimating and Incentivizing Imperfect-Knowledge Agents with Hidden
Rewards [4.742123770879715]
In practice, incentive providers often cannot observe the reward realizations of incentivized agents.
This paper explores a repeated adverse selection game between a self-interested learning agent and a learning principal.
We introduce an estimator whose only input is the history of principal's incentives and agent's choices.
arXiv Detail & Related papers (2023-08-13T08:12:01Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Latent State Marginalization as a Low-cost Approach for Improving
Exploration [79.12247903178934]
We propose the adoption of latent variable policies within the MaxEnt framework.
We show that latent variable policies naturally emerges under the use of world models with a latent belief state.
We experimentally validate our method on continuous control tasks, showing that effective marginalization can lead to better exploration and more robust training.
arXiv Detail & Related papers (2022-10-03T15:09:12Z) - Risk Sensitive Model-Based Reinforcement Learning using Uncertainty
Guided Planning [0.0]
In this paper, risk sensitivity is promoted in a model-based reinforcement learning algorithm.
We propose uncertainty guided cross-entropy method planning, which penalises action sequences that result in high variance state predictions.
Experiments display the ability for the agent to identify uncertain regions of the state space during planning and to take actions that maintain the agent within high confidence areas.
arXiv Detail & Related papers (2021-11-09T07:28:00Z) - Fair Incentives for Repeated Engagement [0.46040036610482665]
We study a problem of finding optimal monetary incentive schemes for retention when faced with agents whose participation decisions depend on the incentive they receive.
We show that even in the absence of explicit discrimination, policies may unintentionally discriminate between agents of different types by varying the type composition of the system.
arXiv Detail & Related papers (2021-10-28T04:13:53Z) - Robust Allocations with Diversity Constraints [65.3799850959513]
We show that the Nash Welfare rule that maximizes product of agent values is uniquely positioned to be robust when diversity constraints are introduced.
We also show that the guarantees achieved by Nash Welfare are nearly optimal within a widely studied class of allocation rules.
arXiv Detail & Related papers (2021-09-30T11:09:31Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
We derive a novel policy gradient-style robust optimization approach, PG-BROIL, to balance expected performance and risk.
Results suggest PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse.
arXiv Detail & Related papers (2021-06-11T16:49:15Z) - ERMAS: Becoming Robust to Reward Function Sim-to-Real Gaps in
Multi-Agent Simulations [110.72725220033983]
Epsilon-Robust Multi-Agent Simulation (ERMAS) is a framework for learning AI policies that are robust to such multiagent sim-to-real gaps.
ERMAS learns tax policies that are robust to changes in agent risk aversion, improving social welfare by up to 15% in complextemporal simulations.
In particular, ERMAS learns tax policies that are robust to changes in agent risk aversion, improving social welfare by up to 15% in complextemporal simulations.
arXiv Detail & Related papers (2021-06-10T04:32:20Z) - Corruption-robust exploration in episodic reinforcement learning [76.19192549843727]
We study multi-stage episodic reinforcement learning under adversarial corruptions in both the rewards and the transition probabilities of the underlying system.
Our framework yields efficient algorithms which attain near-optimal regret in the absence of corruptions.
Notably, our work provides the first sublinear regret guarantee which any deviation from purely i.i.d. transitions in the bandit-feedback model for episodic reinforcement learning.
arXiv Detail & Related papers (2019-11-20T03:49:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.