Risk Sensitive Model-Based Reinforcement Learning using Uncertainty
Guided Planning
- URL: http://arxiv.org/abs/2111.04972v1
- Date: Tue, 9 Nov 2021 07:28:00 GMT
- Title: Risk Sensitive Model-Based Reinforcement Learning using Uncertainty
Guided Planning
- Authors: Stefan Radic Webster, Peter Flach
- Abstract summary: In this paper, risk sensitivity is promoted in a model-based reinforcement learning algorithm.
We propose uncertainty guided cross-entropy method planning, which penalises action sequences that result in high variance state predictions.
Experiments display the ability for the agent to identify uncertain regions of the state space during planning and to take actions that maintain the agent within high confidence areas.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying uncertainty and taking mitigating actions is crucial for safe and
trustworthy reinforcement learning agents, especially when deployed in
high-risk environments. In this paper, risk sensitivity is promoted in a
model-based reinforcement learning algorithm by exploiting the ability of a
bootstrap ensemble of dynamics models to estimate environment epistemic
uncertainty. We propose uncertainty guided cross-entropy method planning, which
penalises action sequences that result in high variance state predictions
during model rollouts, guiding the agent to known areas of the state space with
low uncertainty. Experiments display the ability for the agent to identify
uncertain regions of the state space during planning and to take actions that
maintain the agent within high confidence areas, without the requirement of
explicit constraints. The result is a reduction in the performance in terms of
attaining reward, displaying a trade-off between risk and return.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Predictive Uncertainty Quantification via Risk Decompositions for Strictly Proper Scoring Rules [7.0549244915538765]
Uncertainty in predictive modeling often relies on ad hoc methods.
This paper introduces a theoretical approach to understanding uncertainty through statistical risks.
We show how to split pointwise risk into Bayes risk and excess risk.
arXiv Detail & Related papers (2024-02-16T14:40:22Z) - Mind the Uncertainty: Risk-Aware and Actively Exploring Model-Based
Reinforcement Learning [26.497229327357935]
We introduce a simple but effective method for managing risk in model-based reinforcement learning with trajectory sampling.
Experiments indicate that the separation of uncertainties is essential to performing well with data-driven approaches in uncertain and safety-critical control environments.
arXiv Detail & Related papers (2023-09-11T16:10:58Z) - Model-Based Uncertainty in Value Functions [89.31922008981735]
We focus on characterizing the variance over values induced by a distribution over MDPs.
Previous work upper bounds the posterior variance over values by solving a so-called uncertainty Bellman equation.
We propose a new uncertainty Bellman equation whose solution converges to the true posterior variance over values.
arXiv Detail & Related papers (2023-02-24T09:18:27Z) - Risk-Averse Model Uncertainty for Distributionally Robust Safe
Reinforcement Learning [3.9821399546174825]
We introduce a deep reinforcement learning framework for safe decision making in uncertain environments.
We provide robustness guarantees for this framework by showing it is equivalent to a specific class of distributionally robust safe reinforcement learning problems.
In experiments on continuous control tasks with safety constraints, we demonstrate that our framework produces robust performance and safety at deployment time across a range of perturbed test environments.
arXiv Detail & Related papers (2023-01-30T00:37:06Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Fast nonlinear risk assessment for autonomous vehicles using learned
conditional probabilistic models of agent futures [19.247932561037487]
This paper presents fast non-sampling based methods to assess the risk for trajectories of autonomous vehicles.
The presented methods address a wide range of representations for uncertain predictions including both Gaussian and non-Gaussian mixture models.
We construct deterministic linear dynamical systems that govern the exact time evolution of the moments of uncertain position.
arXiv Detail & Related papers (2021-09-21T05:55:39Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - STUaNet: Understanding uncertainty in spatiotemporal collective human
mobility [11.436035608461966]
We propose an uncertainty learning mechanism to simultaneously estimate internal data quality and external uncertainty regarding various contextual interactions.
We show that our proposed model is superior in terms of both forecasting and uncertainty quantification.
arXiv Detail & Related papers (2021-02-09T01:43:27Z) - Reliable Off-policy Evaluation for Reinforcement Learning [53.486680020852724]
In a sequential decision-making problem, off-policy evaluation estimates the expected cumulative reward of a target policy.
We propose a novel framework that provides robust and optimistic cumulative reward estimates using one or multiple logged data.
arXiv Detail & Related papers (2020-11-08T23:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.