Membership Inference Attacks fueled by Few-Short Learning to detect privacy leakage tackling data integrity
- URL: http://arxiv.org/abs/2503.09365v1
- Date: Wed, 12 Mar 2025 13:09:43 GMT
- Title: Membership Inference Attacks fueled by Few-Short Learning to detect privacy leakage tackling data integrity
- Authors: Daniel Jiménez-López, Nuria Rodríguez-Barroso, M. Victoria Luzón, Francisco Herrera,
- Abstract summary: Deep learning models memorize parts of their training data, creating a privacy leakage.<n>We propose a Few-Shot learning based MIA, coined as the FeS-MIA model, which eases the evaluation of the privacy breach of a deep learning model.<n>We also propose an interpretable quantitative and qualitative measure of privacy, referred to as Log-MIA measure.
- Score: 7.8973037023478785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models have an intrinsic privacy issue as they memorize parts of their training data, creating a privacy leakage. Membership Inference Attacks (MIA) exploit it to obtain confidential information about the data used for training, aiming to steal information. They can be repurposed as a measurement of data integrity by inferring whether it was used to train a machine learning model. While state-of-the-art attacks achieve a significant privacy leakage, their requirements are not feasible enough, hindering their role as practical tools to assess the magnitude of the privacy risk. Moreover, the most appropriate evaluation metric of MIA, the True Positive Rate at low False Positive Rate lacks interpretability. We claim that the incorporation of Few-Shot Learning techniques to the MIA field and a proper qualitative and quantitative privacy evaluation measure should deal with these issues. In this context, our proposal is twofold. We propose a Few-Shot learning based MIA, coined as the FeS-MIA model, which eases the evaluation of the privacy breach of a deep learning model by significantly reducing the number of resources required for the purpose. Furthermore, we propose an interpretable quantitative and qualitative measure of privacy, referred to as Log-MIA measure. Jointly, these proposals provide new tools to assess the privacy leakage and to ease the evaluation of the training data integrity of deep learning models, that is, to analyze the privacy breach of a deep learning model. Experiments carried out with MIA over image classification and language modeling tasks and its comparison to the state-of-the-art show that our proposals excel at reporting the privacy leakage of a deep learning model with little extra information.
Related papers
- Privacy-Preserved Automated Scoring using Federated Learning for Educational Research [1.2556373621040728]
This study proposes a federated learning framework for automatic scoring in educational assessments.
Student responses are processed locally on edge devices, and only optimized model parameters are shared with a central aggregation server.
We evaluate our framework using assessment data from nine middle schools, comparing the accuracy of federated learning-based scoring models with traditionally trained centralized models.
arXiv Detail & Related papers (2025-03-12T19:06:25Z) - Real-Time Privacy Risk Measurement with Privacy Tokens for Gradient Leakage [15.700803673467641]
Deep learning models in privacy-sensitive domains have amplified concerns regarding privacy risks.
We propose the concept of privacy tokens, which are derived directly from private gradients during training.
Privacy tokens offer valuable insights into the extent of private information leakage from training data.
We employ Mutual Information (MI) as a robust metric to quantify the relationship between training data and gradients.
arXiv Detail & Related papers (2025-02-05T06:20:20Z) - Underestimated Privacy Risks for Minority Populations in Large Language Model Unlearning [20.018234150653885]
We argue that unlearning should be considered in the worst-case scenario from the privacy perspective.<n>Minority groups experience at least 20% more privacy leakage in most cases across six unlearning approaches.
arXiv Detail & Related papers (2024-12-11T17:22:07Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
Recently, a new type of privacy attack, the model inversion attacks (MIAs), aims to extract sensitive features of private data for training.
Despite the significance, there is a lack of systematic studies that provide a comprehensive overview and deeper insights into MIAs.
This survey aims to summarize up-to-date MIA methods in both attacks and defenses.
arXiv Detail & Related papers (2024-11-15T08:09:28Z) - Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [92.99416966226724]
We introduce Facial Identity Unlearning Benchmark (FIUBench), a novel VLM unlearning benchmark designed to robustly evaluate the effectiveness of unlearning algorithms.<n>We apply a two-stage evaluation pipeline that is designed to precisely control the sources of information and their exposure levels.<n>Through the evaluation of four baseline VLM unlearning algorithms within FIUBench, we find that all methods remain limited in their unlearning performance.
arXiv Detail & Related papers (2024-11-05T23:26:10Z) - Detecting Training Data of Large Language Models via Expectation Maximization [62.28028046993391]
We introduce EM-MIA, a novel membership inference method that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm.
EM-MIA achieves state-of-the-art results on WikiMIA.
arXiv Detail & Related papers (2024-10-10T03:31:16Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
We focus on the summarization task and investigate the membership inference (MI) attack.
We exploit text similarity and the model's resistance to document modifications as potential MI signals.
We discuss several safeguards for training summarization models to protect against MI attacks and discuss the inherent trade-off between privacy and utility.
arXiv Detail & Related papers (2023-10-20T05:44:39Z) - Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework [6.828884629694705]
This article proposes the conceptual model called PrivChatGPT, a privacy-generative model for LLMs.
PrivChatGPT consists of two main components i.e., preserving user privacy during the data curation/pre-processing together with preserving private context and the private training process for large-scale data.
arXiv Detail & Related papers (2023-10-19T06:55:13Z) - On the Privacy Effect of Data Enhancement via the Lens of Memorization [20.63044895680223]
We propose to investigate privacy from a new perspective called memorization.
Through the lens of memorization, we find that previously deployed MIAs produce misleading results as they are less likely to identify samples with higher privacy risks.
We demonstrate that the generalization gap and privacy leakage are less correlated than those of the previous results.
arXiv Detail & Related papers (2022-08-17T13:02:17Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.