Exploring the boundary of quantum network states from inside out
- URL: http://arxiv.org/abs/2503.09480v1
- Date: Wed, 12 Mar 2025 15:33:50 GMT
- Title: Exploring the boundary of quantum network states from inside out
- Authors: Xiang Zhou, Zhen-Peng Xu, Liang-Liang Sun, Chunfeng Wu, Sixia Yu,
- Abstract summary: Quantum networks with bipartite resources and shared randomness present the simplest infrastructure for implementing a future quantum internet.<n>We investigate which kinds of entanglement can or cannot be generated from this kind of quantum network by examining their fidelity with different graph states.
- Score: 5.116241131647859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum networks with bipartite resources and shared randomness present the simplest infrastructure for implementing a future quantum internet. Here, we shall investigate which kinds of entanglement can or cannot be generated from this kind of quantum network by examining their fidelity with different graph states. On the one hand, based on a standard form of graph states under local complementation and a fine-grained uncertainty relation between two projections, we establish upper bounds of fidelity that improve over previous results by at least $25\%$ as the dimension of local systems tends to infinity. On the other hand, in the triangle network, we propose efficient protocols to generate genuine multipartite entangled states from the network, providing significant nontrivial lower bounds of fidelity with high dimensional GHZ states.
Related papers
- General Concurrence Percolation on Quantum Networks [1.03590082373586]
A quantum network is a network of entangled states and can be used to transmit quantum information.<n>We introduce a new protocol based on bond percolation to create a network of maximally entangled states.
arXiv Detail & Related papers (2025-01-19T10:29:42Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Quantum-enhanced metrology with network states [8.515162179098382]
We prove a general bound that limits the performance of using quantum network states to estimate a global parameter.
Our work establishes both the limitation and the possibility of quantum metrology within quantum networks.
arXiv Detail & Related papers (2023-07-15T09:46:35Z) - Hierarchical certification of nonclassical network correlations [50.32788626697182]
We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them.
We insert this assumption, which leads to results more amenable to certification in experiments.
arXiv Detail & Related papers (2023-06-27T18:00:01Z) - Certification of non-classicality in all links of a photonic star
network without assuming quantum mechanics [52.95080735625503]
Full network nonlocality goes beyond standard nonlocality in networks by falsifying any model in which at least one source is classical.
We report on the observation of full network nonlocality in a star-shaped network featuring three independent sources of photonic qubits and joint three-qubit entanglement-swapping measurements.
arXiv Detail & Related papers (2022-12-19T19:00:01Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum LOSR networks cannot generate graph states with high fidelity [6.720135092777862]
We prove that all multi-qubit graph states arising from a connected graph cannot originate from any quantum network with bipartite sources.
The fidelity of a multi-qubit graph state and any network state cannot exceed $9/10$.
arXiv Detail & Related papers (2022-08-25T14:00:00Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Realization of a multi-node quantum network of remote solid-state qubits [0.45823749779393547]
We report on the experimental realization of a three-node entanglement-based quantum network.
We achieve real-time communication and feed-forward gate operations across the network.
We capitalize on the novel capabilities of this network to realize two canonical protocols without post-selection.
arXiv Detail & Related papers (2021-02-08T19:00:03Z) - Quantum entanglement in the triangle network [0.0]
We discuss quantum correlations in networks from the perspective of the underlying quantum states and their entanglement.
We derive necessary criteria for a state to be preparable in such a network, considering both the cases where the sources are statistically independent and classically correlated.
arXiv Detail & Related papers (2020-02-10T17:34:20Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.