Electro-mechanically tunable, waveguide-coupled photonic-crystal cavities with embedded quantum dots
- URL: http://arxiv.org/abs/2503.09482v1
- Date: Wed, 12 Mar 2025 15:37:02 GMT
- Title: Electro-mechanically tunable, waveguide-coupled photonic-crystal cavities with embedded quantum dots
- Authors: Luke A. F. Brunswick, Luke Hallacy, René Dost, Edmund Clarke, Maurice S. Skolnick, Luke R. Wilson,
- Abstract summary: We present a fully tunable system based on a 1D photonic-crystal cavity with an embedded quantum dot.<n>A micro-electromechanical cantilever is used to tune the cavity mode wavelength.<n>A quantum dot is tuned into resonance with the cavity mode, exhibiting an enhanced emission rate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: On-chip micro-cavities with embedded quantum emitters provide an excellent platform for high-performance quantum technologies. A major difficulty for such devices is overcoming the detrimental effects of fluctuations in the device dimensions caused by the limitations of the fabrication processes. We present a fully tunable system based on a 1D photonic-crystal cavity with an embedded quantum dot, which enables tuning of both the quantum dot emission energy and the cavity mode wavelength. A micro-electromechanical cantilever is used to tune the cavity mode wavelength via index modulation and the quantum-confined Stark effect is used to tune the quantum dot emission energy, mitigating the effect of fabrication imperfections. To demonstrate the operation of the device, a maximum, voltage-controllable cavity tuning range of $\Delta \lambda = 1.8$ nm is observed. This signal is measured at the end of a bus waveguide which side-couples to the cavity, enabling the coupling of multiple cavities to a common waveguide, a key requirement for scale-up in these systems. Additionally, a quantum dot is tuned into resonance with the cavity mode, exhibiting an enhanced emission rate with a resolution limited Purcell factor of $F_P = 3.5$.
Related papers
- Efficiently catching entangled microwave photons from a quantum transducer with shaped optical pumps [0.0]
Quantum transducer provides a practical way of coherently connecting optical communication channels and microwave quantum processors.
Recent experiments on quantum transducer verifying entanglement between microwave and optical photons show the promise of approaching that goal.
To efficiently capture or detect a single microwave photon with arbitrary time profile remains challenging.
arXiv Detail & Related papers (2024-09-09T23:31:15Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Jaynes-Cummings interaction between low energy free-electrons and cavity
photons [0.571097144710995]
We propose a new approach to realize the Jaynes-Cummings Hamiltonian using low energy free-electrons coupled to dielectric microcavities.
Our approach utilizes quantum recoil, which causes a large detuning that inhibits the emission of multiple consecutive photons.
We show that this approach can be used for generation of single photons with unity efficiency and high fidelity.
arXiv Detail & Related papers (2023-02-03T07:06:51Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Large Single-Phonon Optomechanical Coupling between Quantum Dots and
Tightly Confined Surface Acoustic Waves in the Quantum Regime [1.7039969990048311]
Small acoustic cavities with large zero-point motion are required for high efficiencies.
We experimentally establish the feasibility of this platform through electro- and opto-mechanical characterization.
We show conversion between microwave phonons and optical photons with sub-natural linewidths.
arXiv Detail & Related papers (2022-05-03T02:53:01Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Near Transform-limited Quantum Dot Linewidths in a Broadband Photonic
Crystal Waveguide [0.0]
Planar nanophotonic structures enable broadband, near-unity coupling of emission from quantum dots embedded within.
We report suppression of the noise by fabricating photonic crystal waveguides in a gallium arsenide membrane containing quantum dots embedded in a $p$-$i$-$n$ diode.
arXiv Detail & Related papers (2020-05-08T10:21:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.