Near Transform-limited Quantum Dot Linewidths in a Broadband Photonic
Crystal Waveguide
- URL: http://arxiv.org/abs/2005.03943v1
- Date: Fri, 8 May 2020 10:21:26 GMT
- Title: Near Transform-limited Quantum Dot Linewidths in a Broadband Photonic
Crystal Waveguide
- Authors: Freja T. Pedersen (1), Ying Wang (1), Cecilie T. Olesen (1), Sven
Scholz (2), Andreas D. Wieck (2), Arne Ludwig (2), Matthias C. L\"obl (3),
Richard J. Warburton (3), Leonardo Midolo (1), Ravitej Uppu (1), Peter Lodahl
(1)
- Abstract summary: Planar nanophotonic structures enable broadband, near-unity coupling of emission from quantum dots embedded within.
We report suppression of the noise by fabricating photonic crystal waveguides in a gallium arsenide membrane containing quantum dots embedded in a $p$-$i$-$n$ diode.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Planar nanophotonic structures enable broadband, near-unity coupling of
emission from quantum dots embedded within, thereby realizing ideal
singe-photon sources. The efficiency and coherence of the single-photon source
is limited by charge noise, which results in the broadening of the emission
spectrum.We report suppression of the noise by fabricating photonic crystal
waveguides in a gallium arsenide membrane containing quantum dots embedded in a
$p$-$i$-$n$ diode. Local electrical contacts in the vicinity of the waveguides
minimize the leakage current and allow fast electrical control ($\approx$4 MHz
bandwidth) of the quantum dot resonances. Resonant linewidth measurements of
$79$ quantum dots coupled to the photonic crystal waveguides exhibit near
transform-limited emission over a 6 nm wide range of emission wavelengths.
Importantly, the local electrical contacts allow independent tuning of multiple
quantum dots on the same chip, which together with the transform-limited
emission are key components in realizing multiemitter-based quantum information
processing.
Related papers
- Nonreciprocal Bundle Emissions of Quantum Entangled Pairs [5.485473247089648]
spinning the resonator to induce the Sagnac effect, we can obtain nonreciprocal photon-phonon and photon-magnon super-Rabi oscillations.
Opening dissipative channels for such super-Rabi oscillations enables the realization of directional bundle emissions of entangled photon-phonon pairs and photon-magnon pairs.
This nonreciprocal emission is a flexible switch that can be controlled with precision, and simultaneous emissions of different entangled pairs can even emerge but in opposite directions by driving the resonator from different directions.
arXiv Detail & Related papers (2024-06-18T13:57:17Z) - Independent electrical control of two quantum dots coupled through a
photonic-crystal waveguide [0.49252227263015774]
Two semiconductor quantum dot emitters are efficiently coupled to a photonic-crystal waveguide.
We exploit the single-photon stream from one quantum dot to perform spectroscopy on the second quantum dot positioned 16$mu$m away in the waveguide.
arXiv Detail & Related papers (2023-03-01T09:13:47Z) - Arbitrary structured quantum emission with a multifunctional imaging
metalens [3.6975314342823995]
We introduce the use of an ultrathin polarisation-beam-splitting metalens for the arbitrary structuring of quantum emission at room temperature.
The hybrid quantum metalens enables simultaneous manipulation of multiple degrees of freedom of a quantum light source.
The demonstrated arbitrary wavefront shaping of quantum emission in multiple degrees of freedom could unleash the full potential of solid-state SPEs.
arXiv Detail & Related papers (2022-09-10T02:14:57Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Picosecond Pulsed Squeezing in Thin-Film Lithium Niobate Strip-Loaded
Waveguides at Telecommunication Wavelengths [52.77024349608834]
We show quadrature squeezing of picosecond pulses in a thin-film lithium niobate strip-loaded waveguide.
This work highlights the potential of the strip-loaded waveguide platform for broadband squeezing applications.
arXiv Detail & Related papers (2022-04-12T10:42:19Z) - Photoneutralization of charges in GaAs quantum dot based entangled
photon emitters [0.923921787880063]
We show that emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
Our finding demonstrates that the emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
arXiv Detail & Related papers (2021-10-05T20:25:52Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Deterministically fabricated strain-tunable quantum dot single-photon
sources emitting in the telecom O-band [0.0]
We present a spectrally tunable single-photon source emitting in the telecom O-band with the potential to function as a building block of a quantum communication network.
A thin membrane of GaAs embedding InGaAs quantum dots (QDs) is attached onto a piezoelectric actuator via gold thermocompression bonding.
arXiv Detail & Related papers (2020-09-26T09:03:50Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.