論文の概要: Differentially Private Equilibrium Finding in Polymatrix Games
- arxiv url: http://arxiv.org/abs/2503.09538v1
- Date: Wed, 12 Mar 2025 16:54:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:40:32.021847
- Title: Differentially Private Equilibrium Finding in Polymatrix Games
- Title(参考訳): ポリマトリクスゲームで見いだされる微分プライベート平衡
- Authors: Mingyang Liu, Gabriele Farina, Asuman Ozdaglar,
- Abstract要約: 2つの設定のいずれかで高い精度と差分プライバシー予算を同時に達成できないことを示す。
我々は,Nashギャップを同時に解消して戦略を回復する分散アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 21.195897792629548
- License:
- Abstract: We study equilibrium finding in polymatrix games under differential privacy constraints. To start, we show that high accuracy and asymptotically vanishing differential privacy budget (as the number of players goes to infinity) cannot be achieved simultaneously under either of the two settings: (i) We seek to establish equilibrium approximation guarantees in terms of Euclidean distance to the equilibrium set, and (ii) the adversary has access to all communication channels. Then, assuming the adversary has access to a constant number of communication channels, we develop a novel distributed algorithm that recovers strategies with simultaneously vanishing Nash gap (in expected utility, also referred to as exploitability and privacy budget as the number of players increases.
- Abstract(参考訳): 差分プライバシー制約下でのポリマトリクスゲームにおける平衡探索について検討する。
まず、高い精度と漸近的に異なるプライバシー予算(プレイヤーの数が無限になるにつれて)を同時に達成できないことを示す。
一 平衡集合に対するユークリッド距離の観点から平衡近似の保証を確立すること。
(二)相手はすべての通信チャンネルにアクセスすることができる。
そして,敵が一定数の通信チャネルにアクセスすると仮定して,Nashギャップを同時に解消して戦略を回復する新たな分散アルゴリズムを開発する(期待ユーティリティでは,プレイヤー数の増加に伴い,エクスプロイタビリティとプライバシ予算とも呼ばれる)。
関連論文リスト
- Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games [21.168085154982712]
マルチプレイヤーゲームにおける平衡は、一意でも爆発的でもない。
本稿では,平等な共有という自然な目的に焦点をあてることで,これらの課題に対処するための最初の一歩を踏み出す。
我々は、様々な設定でほぼ同じシェアを確実に得る、非回帰学習にインスパイアされた、一連の効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-06-06T15:59:17Z) - Optimistic Policy Gradient in Multi-Player Markov Games with a Single
Controller: Convergence Beyond the Minty Property [89.96815099996132]
単一コントローラを用いたマルチプレイヤーゲームにおいて,楽観的なポリシー勾配手法を特徴付ける新しいフレームワークを開発した。
我々のアプローチは、我々が導入する古典的なミニティの自然一般化に依存しており、マルコフゲームを超えてさらなる応用が期待できる。
論文 参考訳(メタデータ) (2023-12-19T11:34:10Z) - Offline Learning in Markov Games with General Function Approximation [22.2472618685325]
マルコフゲームにおけるオフラインマルチエージェント強化学習(RL)について検討する。
マルコフゲームにおけるサンプル効率のよいオフライン学習のための最初のフレームワークを提供する。
論文 参考訳(メタデータ) (2023-02-06T05:22:27Z) - On the Convergence of No-Regret Learning Dynamics in Time-Varying Games [89.96815099996132]
時間変化ゲームにおける楽観的勾配降下(OGD)の収束を特徴付ける。
我々のフレームワークは、ゼロサムゲームにおけるOGDの平衡ギャップに対して鋭い収束境界をもたらす。
また,静的ゲームにおける動的後悔の保証に関する新たな洞察も提供する。
論文 参考訳(メタデータ) (2023-01-26T17:25:45Z) - Abstracting Imperfect Information Away from Two-Player Zero-Sum Games [85.27865680662973]
Nayyar et al. (2013) は、プレイヤーがプレイ中にポリシーを公に発表することで、不完全な情報を共通のペイオフゲームから抽象化できることを示した。
この研究は、ある正規化された平衡が上記の非対応問題を持たないことを示している。
これらの正規化された平衡はナッシュ平衡に任意に近づくことができるので、この結果は2つのプレイヤーゼロサムゲームを解くための新たな視点への扉を開く。
論文 参考訳(メタデータ) (2023-01-22T16:54:06Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
グラデーションへのアクセスを伴わない連続アクションゲームのナッシュ平衡を近似的に計算する問題について検討する。
ニューラルネットワークを用いてプレイヤーの戦略をモデル化する。
本論文は、制約のない混合戦略と勾配情報のない一般的な連続アクションゲームを解決する最初の方法である。
論文 参考訳(メタデータ) (2022-11-29T05:16:41Z) - Ensure Differential Privacy and Convergence Accuracy in Consensus Tracking and Aggregative Games with Coupling Constraints [1.8661143694112918]
共有結合制約を持つ完全分散集約ゲームに対する差分プライバシに対処する。
一般化ナッシュ平衡(GNE)探索機構と微分プライバシ雑音注入機構を共同設計することにより,最初のGNE探索アルゴリズムを提案する。
また,高精度な追跡性能を維持しつつ,厳密なエプシロン差分プライバシーを実現するための新しいコンセンサス追跡アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-28T20:33:37Z) - Efficiently Computing Nash Equilibria in Adversarial Team Markov Games [19.717850955051837]
我々は,同じプレイヤーが対戦相手と競合するゲームのクラスを紹介する。
この設定により、ゼロサムマルコフゲームの可能性ゲームの統一処理が可能になる。
我々の主な貢献は、対戦チームマルコフゲームにおける固定的な$epsilon$-approximate Nash平衡を計算するための最初のアルゴリズムである。
論文 参考訳(メタデータ) (2022-08-03T16:41:01Z) - A unified stochastic approximation framework for learning in games [82.74514886461257]
ゲームにおける学習の長期的挙動(連続的・有限的)を解析するためのフレキシブルな近似フレームワークを開発する。
提案する分析テンプレートには,勾配に基づく手法,有限ゲームでの学習のための指数的/乗算的重み付け,楽観的および帯域的変異など,幅広い一般的な学習アルゴリズムが組み込まれている。
論文 参考訳(メタデータ) (2022-06-08T14:30:38Z) - Last-iterate Convergence of Decentralized Optimistic Gradient
Descent/Ascent in Infinite-horizon Competitive Markov Games [37.70703888365849]
無限水平割引2プレイヤーゼロサムマルコフゲームについて検討する。
我々は,自己再生下でのナッシュ均衡に収束する分散アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-02-08T21:45:56Z) - Independent Policy Gradient Methods for Competitive Reinforcement
Learning [62.91197073795261]
2つのエージェントによる競争強化学習環境における独立学習アルゴリズムに対するグローバル・非漸近収束保証を得る。
本研究は,両選手がタンデムで政策勾配法を実行すると,学習率を2回ルールに従えば,その政策はゲームの最小均衡に収束することを示す。
論文 参考訳(メタデータ) (2021-01-11T23:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。