論文の概要: Ensure Differential Privacy and Convergence Accuracy in Consensus Tracking and Aggregative Games with Coupling Constraints
- arxiv url: http://arxiv.org/abs/2210.16395v4
- Date: Tue, 16 Jul 2024 17:03:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 00:30:09.219511
- Title: Ensure Differential Privacy and Convergence Accuracy in Consensus Tracking and Aggregative Games with Coupling Constraints
- Title(参考訳): コンセンサストラッキングとアグリゲーションゲームにおける結合制約による差分プライバシと収束精度の確保
- Authors: Yongqiang Wang,
- Abstract要約: 共有結合制約を持つ完全分散集約ゲームに対する差分プライバシに対処する。
一般化ナッシュ平衡(GNE)探索機構と微分プライバシ雑音注入機構を共同設計することにより,最初のGNE探索アルゴリズムを提案する。
また,高精度な追跡性能を維持しつつ,厳密なエプシロン差分プライバシーを実現するための新しいコンセンサス追跡アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.8661143694112918
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We address differential privacy for fully distributed aggregative games with shared coupling constraints. By co-designing the generalized Nash equilibrium (GNE) seeking mechanism and the differential-privacy noise injection mechanism, we propose the first GNE seeking algorithm that can ensure both provable convergence to the GNE and rigorous epsilon-differential privacy, even with the number of iterations tending to infinity. As a basis of the co-design, we also propose a new consensus-tracking algorithm that can achieve rigorous epsilon-differential privacy while maintaining accurate tracking performance, which, to our knowledge, has not been achieved before. To facilitate the convergence analysis, we also establish a general convergence result for stochastically-perturbed nonstationary fixed-point iteration processes, which lie at the core of numerous optimization and variational problems. Numerical simulation results confirm the effectiveness of the proposed approach.
- Abstract(参考訳): 共有結合制約を持つ完全分散集約ゲームに対する差分プライバシに対処する。
一般化ナッシュ平衡(GNE)探索機構と微分プライバシ雑音注入機構を共同設計することにより、GNEへの証明可能な収束と厳密なエプシロン差分プライバシーを両立できる最初のGNE探索アルゴリズムを提案する。
共同設計の基盤として,我々の知る限りでは達成されていない正確な追跡性能を維持しつつ,厳密なエプシロン差分プライバシーを実現するための新たなコンセンサス追跡アルゴリズムを提案する。
収束解析を容易にするために,多数の最適化と変分問題の中核に位置する確率論的に摂動された非定常不動点反復過程に対する一般化結果も確立する。
数値シミュレーションの結果,提案手法の有効性が確認された。
関連論文リスト
- Adaptive Differentially Quantized Subspace Perturbation (ADQSP): A Unified Framework for Privacy-Preserving Distributed Average Consensus [6.364764301218972]
本稿では適応微分量子化部分空間(ADQSP)という一般手法を提案する。
本研究では,単一の量子化パラメータを変化させることで,提案手法がSMPC型の性能とDP型性能に異なることを示す。
この結果から,従来の分散信号処理ツールを暗号保証に活用する可能性が示唆された。
論文 参考訳(メタデータ) (2023-12-13T07:52:16Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Bounded and Unbiased Composite Differential Privacy [25.427802467876248]
差分プライバシ(DP)の目的は、隣接する2つのデータベース間で区別できない出力分布を生成することにより、プライバシを保護することである。
既存のソリューションでは、後処理やトランケーション技術を使ってこの問題に対処しようとしている。
本稿では,合成確率密度関数を用いて有界および非偏りの出力を生成する新しい微分プライベート機構を提案する。
論文 参考訳(メタデータ) (2023-11-04T04:43:47Z) - Private Networked Federated Learning for Nonsmooth Objectives [7.278228169713637]
本稿では,非平滑な目的関数を解くためのネットワーク型フェデレーション学習アルゴリズムを提案する。
参加者の秘密性を保証するため、ゼロ集中型微分プライバシー概念(zCDP)を用いる。
プライバシ保証とアルゴリズムの正確な解への収束の完全な理論的証明を提供する。
論文 参考訳(メタデータ) (2023-06-24T16:13:28Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - Quantization enabled Privacy Protection in Decentralized Stochastic
Optimization [34.24521534464185]
分散最適化は、機械学習、制御、センサーネットワークのように多様な領域で使用することができる。
プライバシー保護は、分散最適化の実装において重要な必要性として浮上している。
本稿では,アグレッシブ量子化誤差が存在する場合でも,証明可能な収束精度を保証できるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-07T15:17:23Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - An automatic differentiation system for the age of differential privacy [65.35244647521989]
Tritiumは、微分プライベート(DP)機械学習(ML)のための自動微分ベース感度分析フレームワークである
我々は、微分プライベート(DP)機械学習(ML)のための自動微分に基づく感度分析フレームワークTritiumを紹介する。
論文 参考訳(メタデータ) (2021-09-22T08:07:42Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
本稿では,SGDA と SCO の最終的な収束保証として,期待されるコヒーレンシティ条件を導入し,その利点を説明する。
定常的なステップサイズを用いた場合、両手法の線形収束性を解の近傍に証明する。
我々の収束保証は任意のサンプリングパラダイムの下で保たれ、ミニバッチの複雑さに関する洞察を与える。
論文 参考訳(メタデータ) (2021-06-30T18:32:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。