Gap between quantum theory based on real and complex numbers is arbitrarily large
- URL: http://arxiv.org/abs/2503.09724v1
- Date: Wed, 12 Mar 2025 18:12:18 GMT
- Title: Gap between quantum theory based on real and complex numbers is arbitrarily large
- Authors: Shubhayan Sarkar, David Trillo, Marc Olivier Renou, Remigiusz Augusiak,
- Abstract summary: We study a scenario with $N+1$ parties sharing quantum systems in a star network.<n>As the number of parties grows, Hilbert space formalism based on real numbers becomes exceedingly worse at describing complex networks of quantum systems.
- Score: 1.8749305679160366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Information Theory, the standard formalism used to represent information contained in quantum systems, is based on complex Hilbert spaces (CQT). It was recently shown that it predicts correlations in quantum networks which cannot be explained by Real Quantum Theory (RQT), a quantum theory with real Hilbert spaces instead of complex ones, when three parties are involved in a quantum network with non-trivial locality constraints. In this work, we study a scenario with $N+1$ parties sharing quantum systems in a star network. Here, we construct a "conditional" multipartite Bell inequality that exhibits a gap between RQT and CQT, which linearly increases with $N$ and is thus arbitrarily large in the asymptotic limit. This implies, that, as the number of parties grows, Hilbert space formalism based on real numbers becomes exceedingly worse at describing complex networks of quantum systems. Furthermore, we also compute the tolerance of this gap to experimental errors.
Related papers
- Locality Implies Complex Numbers in Quantum Mechanics [0.0]
We show that a real-number quantum theory, compatible with the independent source assumption, requires the inclusion of a nonlocal map.
If the independent source assumption holds, complex-number quantum theory is equivalent to a real-number quantum theory with hidden nonlocal degrees of freedom.
arXiv Detail & Related papers (2025-04-10T14:47:00Z) - Quantum complexity in gravity, quantum field theory, and quantum information science [0.0]
Quantum complexity quantifies the difficulty of preparing a state, or implementing a unitary, using limited resources.
Different communities apply different tools to quantum complexity, as well as define complexity differently.
We cover multiple definitions of complexity, as well as their key properties and applications.
arXiv Detail & Related papers (2025-03-13T18:00:01Z) - One-Shot Min-Entropy Calculation Of Classical-Quantum States And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.<n>It offers an alternative tight finite-data analysis for the BB84 quantum key distribution scheme.<n>It gives the best finite-key bound known to date for a variant of device independent quantum key distribution protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - A new indeterminacy-based quantum theory [0.0]
I propose a novel interpretation of quantum theory, which I will call Environmental Determinacy-based (EnDQT)
Unlike theories such as spontaneous collapse theories, no modifications of the fundamental equations of quantum theory are required to establish when determinate values arise.
EnDQT may provide payoffs to other areas of physics and their foundations, such as cosmology.
arXiv Detail & Related papers (2023-10-06T04:05:38Z) - Learning marginals suffices! [14.322753787990036]
We investigate the relationship between the sample complexity of learning a quantum state and the circuit complexity of the state.
We show that learning its marginals for the quantum state with low circuit complexity suffices for state tomography.
arXiv Detail & Related papers (2023-03-15T21:09:29Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - Quantum Merlin-Arthur proof systems for synthesizing quantum states [0.0]
We investigate a state synthesizing counterpart of the class NP-synthesizing.
We establish that the family of UQMA witnesses, considered as one of the most natural candidates, is in stateQMA.
We demonstrate that stateQCMA achieves perfect completeness.
arXiv Detail & Related papers (2023-03-03T12:14:07Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Testing real quantum theory in an optical quantum network [1.6720048283946962]
We show that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios.
We disproving real quantum theory as a universal physical theory.
arXiv Detail & Related papers (2021-11-30T05:09:36Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Ruling out real-valued standard formalism of quantum theory [19.015836913247288]
A quantum game has been developed to distinguish standard quantum theory from its real-number analog.
We experimentally implement the quantum game based on entanglement swapping with a state-of-the-art fidelity of 0.952(1).
Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
arXiv Detail & Related papers (2021-03-15T03:56:13Z) - Maximal qubit violation of n-local inequalities in quantum network [0.0]
Source independent quantum networks are considered as a natural generalization to the Bell scenario.
We consider the complexities in the quantum networks with an arbitrary number of parties distributed in chain-shaped and star-shaped networks.
arXiv Detail & Related papers (2020-11-06T18:45:07Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.