Quantum Merlin-Arthur proof systems for synthesizing quantum states
- URL: http://arxiv.org/abs/2303.01877v3
- Date: Tue, 27 Jun 2023 12:27:18 GMT
- Title: Quantum Merlin-Arthur proof systems for synthesizing quantum states
- Authors: Hugo Delavenne, Fran\c{c}ois Le Gall, Yupan Liu, and Masayuki Miyamoto
- Abstract summary: We investigate a state synthesizing counterpart of the class NP-synthesizing.
We establish that the family of UQMA witnesses, considered as one of the most natural candidates, is in stateQMA.
We demonstrate that stateQCMA achieves perfect completeness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Complexity theory typically focuses on the difficulty of solving
computational problems using classical inputs and outputs, even with a quantum
computer. In the quantum world, it is natural to apply a different notion of
complexity, namely the complexity of synthesizing quantum states. We
investigate a state-synthesizing counterpart of the class NP, referred to as
stateQMA, which is concerned with preparing certain quantum states through a
polynomial-time quantum verifier with the aid of a single quantum message from
an all-powerful but untrusted prover. This is a subclass of the class stateQIP
recently introduced by Rosenthal and Yuen (ITCS 2022), which permits
polynomially many interactions between the prover and the verifier. Our main
result consists of error reduction of this class and its variants with an
exponentially small gap or a bounded space, as well as how this class relates
to other fundamental state synthesizing classes, i.e., states generated by
uniform polynomial-time quantum circuits (stateBQP) and space-uniform
polynomial-space quantum circuits (statePSPACE). Furthermore, we establish that
the family of UQMA witnesses, considered as one of the most natural candidates,
is in stateQMA. Additionally, we demonstrate that stateQCMA achieves perfect
completeness.
Related papers
- Complexity Theory for Quantum Promise Problems [5.049812996253858]
We study the relationship between quantum cryptography and complexity theory, especially within Impagliazzo's five worlds framework.
We focus on complexity classes p/mBQP, p/mQ(C)MA, $mathrmp/mQSZK_hv$, p/mQIP, and p/mPSPACE, where "p/mC" denotes classes with pure (p) or mixed (m) states.
We apply this framework to cryptography, showing that breaking one-way state generators, pseudorandom states, and EFI is bounded by mQCMA or
arXiv Detail & Related papers (2024-11-06T07:29:52Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - State-Averaged Orbital-Optimized VQE: A quantum algorithm for the
democratic description of ground and excited electronic states [0.0]
The SA-OO-VQE package aims to answer both problems with its hybrid quantum-classical conception based on a typical Variational Quantum Eigensolver approach.
The SA-OO-VQE has the ability to treat degenerate (or quasi-degenerate) states on the same footing, thus avoiding known numerical optimization problems around avoided crossings or conical intersections.
arXiv Detail & Related papers (2024-01-22T12:16:37Z) - Quantum simulation of excited states from parallel contracted quantum
eigensolvers [5.915403570478968]
We show that a ground-state contracted quantum eigensolver can be generalized to compute any number of quantum eigenstates simultaneously.
We introduce two excited-state CQEs that perform the excited-state calculation while inheriting many of the remarkable features of the original ground-state version of the algorithm.
arXiv Detail & Related papers (2023-11-08T23:52:31Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - stateQIP = statePSPACE [0.15229257192293197]
We study the relation between two such state classes:SDPPSPACE, and stateQIP.
Our main result is the reverse inclusion, stateQIP $subseteq$ statePSPACE.
We also show that optimal prover strategies for general quantum interactive protocols can be implemented in quantum space.
arXiv Detail & Related papers (2023-01-18T19:00:17Z) - Interactive Proofs for Synthesizing Quantum States and Unitaries [0.15229257192293197]
We study the complexity of inherently quantum operations such as constructing quantum states or performing unitary transformations.
We define models of interactive proofs for quantum states and unitaries.
We obtain analogous results in the setting with multiple entangled provers as well.
arXiv Detail & Related papers (2021-08-16T15:59:33Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.