A Rule Based Solution to Co-reference Resolution in Clinical Text
- URL: http://arxiv.org/abs/2503.09896v1
- Date: Wed, 12 Mar 2025 23:29:08 GMT
- Title: A Rule Based Solution to Co-reference Resolution in Clinical Text
- Authors: Ping Chen, David Hinote, Guoqing Chen,
- Abstract summary: The aim of this study was to build an effective co-reference resolution system tailored for the biomedical domain.<n>Our system achieved 89.6% overall performance on multiple medical datasets.
- Score: 1.2730705848836437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objective: The aim of this study was to build an effective co-reference resolution system tailored for the biomedical domain. Materials and Methods: Experiment materials used in this study is provided by the 2011 i2b2 Natural Language Processing Challenge. The 2011 i2b2 challenge involves coreference resolution in medical documents. Concept mentions have been annotated in clinical texts, and the mentions that co-refer in each document are to be linked by coreference chains. Normally, there are two ways of constructing a system to automatically discover co-referent links. One is to manually build rules for co-reference resolution, and the other category of approaches is to use machine learning systems to learn automatically from training datasets and then perform the resolution task on testing datasets. Results: Experiments show the existing co-reference resolution systems are able to find some of the co-referent links, and our rule based system performs well finding the majority of the co-referent links. Our system achieved 89.6% overall performance on multiple medical datasets. Conclusion: The experiment results show that manually crafted rules based on observation of training data is a valid way to accomplish high performance in this coreference resolution task for the critical biomedical domain.
Related papers
- Sebis at SemEval-2023 Task 7: A Joint System for Natural Language
Inference and Evidence Retrieval from Clinical Trial Reports [0.799536002595393]
SemEval-2023 Task 7 was to develop an NLP system for two tasks: evidence retrieval and natural language inference from clinical trial data.
Our system ranked 3rd out of 40 participants with a final submission.
arXiv Detail & Related papers (2023-04-25T22:22:42Z) - Medical Question Summarization with Entity-driven Contrastive Learning [12.008269098530386]
This paper proposes a novel medical question summarization framework using entity-driven contrastive learning (ECL)
ECL employs medical entities in frequently asked questions (FAQs) as focuses and devises an effective mechanism to generate hard negative samples.
We find that some MQA datasets suffer from serious data leakage problems, such as the iCliniq dataset's 33% duplicate rate.
arXiv Detail & Related papers (2023-04-15T00:19:03Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
The study highlights the difficulties faced in sharing tools and resources in this domain.
We annotated a corpus of clinical documents according to 12 types of identifying entities.
We build a hybrid system, merging the results of a deep learning model as well as manual rules.
arXiv Detail & Related papers (2023-03-23T17:17:46Z) - A Marker-based Neural Network System for Extracting Social Determinants
of Health [12.6970199179668]
Social determinants of health (SDoH) on patients' healthcare quality and the disparity is well-known.
Many SDoH items are not coded in structured forms in electronic health records.
We explore a multi-stage pipeline involving named entity recognition (NER), relation classification (RC), and text classification methods to extract SDoH information from clinical notes automatically.
arXiv Detail & Related papers (2022-12-24T18:40:23Z) - Hybrid Rule-Neural Coreference Resolution System based on Actor-Critic
Learning [53.73316523766183]
Coreference resolution systems need to tackle two main tasks.
One task is to detect all of the potential mentions, the other is to learn the linking of an antecedent for each possible mention.
We propose a hybrid rule-neural coreference resolution system based on actor-critic learning.
arXiv Detail & Related papers (2022-12-20T08:55:47Z) - Neural Coreference Resolution based on Reinforcement Learning [53.73316523766183]
Coreference resolution systems need to solve two subtasks.
One task is to detect all of the potential mentions, the other is to learn the linking of an antecedent for each possible mention.
We propose a reinforcement learning actor-critic-based neural coreference resolution system.
arXiv Detail & Related papers (2022-12-18T07:36:35Z) - Federated Offline Reinforcement Learning [55.326673977320574]
We propose a multi-site Markov decision process model that allows for both homogeneous and heterogeneous effects across sites.
We design the first federated policy optimization algorithm for offline RL with sample complexity.
We give a theoretical guarantee for the proposed algorithm, where the suboptimality for the learned policies is comparable to the rate as if data is not distributed.
arXiv Detail & Related papers (2022-06-11T18:03:26Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
Contextual Discourse Vectors (CDV) is a distributed document representation for efficient answer retrieval from long documents.
Our model leverages a dual encoder architecture with hierarchical LSTM layers and multi-task training to encode the position of clinical entities and aspects alongside the document discourse.
We show that our generalized model significantly outperforms several state-of-the-art baselines for healthcare passage ranking.
arXiv Detail & Related papers (2020-02-03T15:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.