Quantum Entanglement Response to Step-like Gate Modulation
- URL: http://arxiv.org/abs/2503.09935v1
- Date: Thu, 13 Mar 2025 01:13:27 GMT
- Title: Quantum Entanglement Response to Step-like Gate Modulation
- Authors: E. M. Fernandes, L. Sanz, F. M. Souza,
- Abstract summary: We examine the influence of a step-like gate voltage on the entanglement formation of two interacting charge qubits.<n>We calculate fidelity, linear entropy, and negativity within the framework of density matrix formalism.<n>Results could contribute to the future experimental realization of entanglement in interacting charge qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We examine the influence of a step-like gate voltage on the entanglement formation of two interacting charge qubits, where charge is injected on demand into the qubits. The gate voltage modulates the tunnel coupling between the qubits and two electronic reservoirs (leads), which supply the initial charges to the system. The qubits interact capacitively through Coulomb repulsion, and the interplay between Coulomb interactions and hopping processes leads to the formation of entangled states. Our analysis focuses on how the physical parameters of the gate pulse affect the degree of entanglement. In pursuit of this aim, we calculate fidelity, linear entropy, and negativity within the framework of density matrix formalism. Our analysis demonstrate how to optimize the gate pulse to reach a ``sweet spot'' that maximizes entanglement, even in the presence of additional dephasing sources. These results could contribute to the future experimental realization of entanglement in interacting charge qubits.
Related papers
- Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.<n>This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Longitudinal (curvature) couplings of an $N$-level qudit to a
superconducting resonator at the adiabatic limit and beyond [0.0]
We investigate the coupling between a multi-level system, or qudit, and a superconducting (SC) resonator's electromagnetic field.
For the first time, we derive Hamiltonians describing the longitudinal multi-level interactions in a general dispersive regime.
We provide examples illustrating the transition from adiabatic to dispersive coupling in different qubit systems.
arXiv Detail & Related papers (2023-12-05T20:33:59Z) - Long-distance photon-mediated and short-distance entangling gates in
three-qubit quantum dot spin systems [0.0]
Superconducting microwave resonator couplers will likely become an essential component in modular semiconductor quantum dot (QD) spin qubit processors.
We focus on a three-qubit system composed of two modules: a two-electron triple QD resonator-coupled to a single-electron double QD.
Using a combination of analytical techniques and numerical results, we derive an effective Hamiltonian that describes the three-qubit logical subspace.
arXiv Detail & Related papers (2023-07-25T14:15:55Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
Time-dependent drives play a crucial role in quantum computing efforts.
They enable single-qubit control, entangling logical operations, as well as qubit readout.
Qubit cloaking was introduced in Lled'o, Dassonneville, et al.
arXiv Detail & Related papers (2023-05-01T15:58:25Z) - Cloaking a qubit in a cavity [36.136619420474766]
Cavity quantum electrodynamics (QED) uses a cavity to engineer the mode structure of the vacuum electromagnetic field.
Controllably decoupling a qubit from the cavity's photon population, effectively cloaking the qubit from the cavity.
Experiment demonstrates how qubit cloaking can be exploited to cancel ac-Stark shift and measurement-induced dephasing.
arXiv Detail & Related papers (2022-11-10T18:45:03Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
We experimentally investigate a hole double quantum dot in silicon by carrying out spin readout with gate-based reflectometry.
We show that characteristic features in the reflected phase signal arising from magneto-spectroscopy convey information on site-dependent $g-$factors in the two dots.
arXiv Detail & Related papers (2022-06-27T09:07:20Z) - Interferometry based on quantum Kibble-Zurek mechanism [5.309487306193579]
We propose an interferometry within the framework of quantum Kibble-Zurek mechanism.
We show that an interference can arise from the interplay between two different critical dynamics derived from a critical point and a tricritical point.
arXiv Detail & Related papers (2022-04-04T10:52:24Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Coherent effects contribution to a fast gate fidelity in ion quantum
computer [47.187609203210705]
We develop a numerical model for full simulation of coherence effects using a linear ion microtrap array and a 2D microtrap array.
We have also studied the dependency of the gate fidelity on the laser power fluctuations.
arXiv Detail & Related papers (2021-12-12T12:53:00Z) - How valley-orbit states in silicon quantum dots probe quantum well
interfaces [0.0]
We report measurements of one- and two-electron valley-orbit state energies as the dot potential is modified by changing gate voltages.
The results enable an understanding of the interplay between the physical contributions and enable a new probe of the quantum well interface.
arXiv Detail & Related papers (2021-03-26T19:23:02Z) - Strong parametric dispersive shifts in a statically decoupled
multi-qubit cavity QED system [0.4915375958667782]
Cavity quantum electrodynamics (QED) with in-situ tunable interactions is important for developing novel systems for quantum simulation and computing.
Here, we couple two transmon qubits to a lumped-element cavity through a shared dc-SQUID.
We show that by parametrically driving the SQUID with an oscillating flux it is possible to independently tune the interactions between either of the qubits and the cavity dynamically.
arXiv Detail & Related papers (2021-03-16T18:46:57Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.