Quantum-Secured DSP-Lite Data Transmission Architectures for AI-Driven Data Centres
- URL: http://arxiv.org/abs/2503.09940v1
- Date: Thu, 13 Mar 2025 01:25:46 GMT
- Title: Quantum-Secured DSP-Lite Data Transmission Architectures for AI-Driven Data Centres
- Authors: Xitao Ji, Wenjie He, Junda Chen, Mingming Zhang, Yuqi Li, Ziwen Zhou, Zhuoxuan Song, Hao Wu, Siqi Yan, Kejin Wei, Zhenrong Zhang, Shuang Wang, Ming Tang,
- Abstract summary: We present a quantum-secured digital signal processing-lite (DSP-Lite) data transmission architecture.<n>It meets all the stringent requirements for AI-driven data centre optical interconnects (AI-DCIs) scenarios.<n>By integrating a self-homodyne coherent (SHC) system and quantum key distribution (QKD) through the multicore-fibre-based space division multiplexing (SDM) technology, our scheme enables secure, high-capacity, and energy-efficient data transmission.
- Score: 14.36552146021482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence-driven (AI-driven) data centres, which require high-performance, scalable, energy-efficient, and secure infrastructure, have led to unprecedented data traffic demands. These demands involve low latency, high bandwidth connections, low power consumption, and data confidentiality. However, conventional optical interconnect solutions, such as intensity-modulated direct detection and traditional coherent systems, cannot address these requirements simultaneously. In particular, conventional encryption protocols that rely on complex algorithms are increasingly vulnerable to the rapid advancement of quantum computing. Here, we propose and demonstrate a quantum-secured digital signal processing-lite (DSP-Lite) data transmission architecture that meets all the stringent requirements for AI-driven data centre optical interconnects (AI-DCIs) scenarios. By integrating a self-homodyne coherent (SHC) system and quantum key distribution (QKD) through the multicore-fibre-based space division multiplexing (SDM) technology, our scheme enables secure, high-capacity, and energy-efficient data transmission while ensuring resilience against quantum computing threats. In our demonstration, we achieved an expandable transmission capacity of 2 Tbit per second (Tb/s) and a quantum secret key rate (SKR) of 229.2 kb/s, with a quantum bit error rate (QBER) of approximately 1.27% and with ultralow power consumption. Our work paves the way for constructing secure, scalable, and cost-efficient data transmission frameworks, thus enabling the next generation of intelligent, leak-proof optical interconnects for data centres.
Related papers
- Beyond Terabit/s Integrated Neuromorphic Photonic Processor for DSP-Free Optical Interconnects [1.9685853627153866]
Multi-scale AI training and inference demand uniform, ultra-low latency, and energy-efficient links.
We present an integrated neuromorphic optical signal processor (OSP) that achieves DSP-free, all-optical, real-time processing.
This research provides a highly scalable, energy-efficient, and high-speed solution, paving the way for next-generation AI infrastructure.
arXiv Detail & Related papers (2025-04-21T11:56:36Z) - Gigabit-rate Quantum Key Distribution on Integrated Photonic Chips [17.76925769483522]
Quantum key distribution (QKD) provides information-theoretic security guaranteed by the laws of quantum mechanics.
We report an integrated silicon photonics-based QKD system that achieves a secret key rate of 1.213 Gbit per second over a metropolitan distance of 10 km with polarization multiplexing.
arXiv Detail & Related papers (2025-04-11T06:57:16Z) - Quantum-Safe integration of TLS in SDN networks [0.0]
transition to quantum-safe cryptography within the next decade is critical.<n>We have selected Transport Layer Security as the foundation to hybridize classical, quantum, and post-quantum cryptography.<n>The performance of this approach has been demonstrated using a deployed production infrastructure.
arXiv Detail & Related papers (2025-02-24T14:35:56Z) - Dynamic Spectrum Access for Ambient Backscatter Communication-assisted D2D Systems with Quantum Reinforcement Learning [68.63990729719369]
The wireless spectrum is becoming scarce, resulting in low spectral efficiency for D2D communications.
This paper aims to integrate the ambient backscatter communication technology into D2D devices to allow them to backscatter ambient RF signals.
We develop a novel quantum reinforcement learning (RL) algorithm that can achieve a faster convergence rate with fewer training parameters.
arXiv Detail & Related papers (2024-10-23T15:36:43Z) - Quantum-Secured Data Centre Interconnect in a field environment [38.4938584033229]
Quantum key distribution (QKD) is an established quantum technology at a high readiness level.
In this article, we present the successful implementation of a QKD field trial within a commercial data centre environment.
The achieved average secret key rate of 2.392 kbps and an average quantum bit error rate of less than 2% demonstrate the commercial feasibility of QKD in real-world scenarios.
arXiv Detail & Related papers (2024-10-14T08:05:25Z) - A practical transmitter device for passive state BB84 quantum key distribution [0.0]
Preparation of quantum states within the transmitter device is a significant driver of both complexity and cost.
A fully passive state preparation approach elegantly resolves these problems by combining state preparation and QRNG stages into a single optical instrument.
We demonstrate our simplified transmitter by establishing a QKD link over a 10 km fiber, generating a secret key rate 110 bits/s.
arXiv Detail & Related papers (2024-05-14T10:08:46Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.<n>We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Experimental demonstration of Continuous-Variable Quantum Key
Distribution with a silicon photonics integrated receiver [0.0]
Quantum Key Distribution (QKD) is a prominent application in the field of quantum cryptography.
We present a CV-QKD receiver based on a silicon PIC capable of performing balanced detection.
arXiv Detail & Related papers (2023-11-07T13:27:47Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
Quantum cloud computing (QCC) offers a promising approach to efficiently provide quantum computing resources.
The fluctuations in user demand and quantum circuit requirements are challenging for efficient resource provisioning.
We propose a resource allocation model to provision quantum computing and networking resources.
arXiv Detail & Related papers (2023-07-25T00:38:46Z) - Ultrafast quantum key distribution using fully parallelized quantum
channels [0.0]
We report on the realization of a multichannel QKD system for plug-and-play high-bandwidth secure communication at telecom wavelength.
A highly parallelized time-correlated single photon counting unit have been developed and linked to an FPGA-controlled QKD evaluation setup.
arXiv Detail & Related papers (2022-07-15T08:46:45Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.