論文の概要: Detecting Dataset Bias in Medical AI: A Generalized and Modality-Agnostic Auditing Framework
- arxiv url: http://arxiv.org/abs/2503.09969v2
- Date: Tue, 03 Jun 2025 20:18:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 16:24:48.929498
- Title: Detecting Dataset Bias in Medical AI: A Generalized and Modality-Agnostic Auditing Framework
- Title(参考訳): 医療AIにおけるデータセットバイアスの検出 - 一般化されたモダリティに依存しない監査フレームワーク
- Authors: Nathan Drenkow, Mitchell Pavlak, Keith Harrigian, Ayah Zirikly, Adarsh Subbaswamy, Mohammad Mehdi Farhangi, Nicholas Petrick, Mathias Unberath,
- Abstract要約: データセットに対する一般属性ユーティリティと検出可能性によるバイアステスト(G-AUDIT)は、モダリティに依存しないデータセット監査フレームワークである。
本手法は,患者属性を含むデータ特性とタスクレベルのアノテーションの関係について検討する。
G-AUDITは、従来の定性的手法で見過ごされる微妙な偏見をうまく識別する。
- 参考スコア(独自算出の注目度): 8.017827642932746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) is now firmly at the center of evidence-based medicine. Despite many success stories that edge the path of AI's rise in healthcare, there are comparably many reports of significant shortcomings and unexpected behavior of AI in deployment. A major reason for these limitations is AI's reliance on association-based learning, where non-representative machine learning datasets can amplify latent bias during training and/or hide it during testing. To unlock new tools capable of foreseeing and preventing such AI bias issues, we present G-AUDIT. Generalized Attribute Utility and Detectability-Induced bias Testing (G-AUDIT) for datasets is a modality-agnostic dataset auditing framework that allows for generating targeted hypotheses about sources of bias in training or testing data. Our method examines the relationship between task-level annotations (commonly referred to as ``labels'') and data properties including patient attributes (e.g., age, sex) and environment/acquisition characteristics (e.g., clinical site, imaging protocols). G-AUDIT quantifies the extent to which the observed data attributes pose a risk for shortcut learning, or in the case of testing data, might hide predictions made based on spurious associations. We demonstrate the broad applicability of our method by analyzing large-scale medical datasets for three distinct modalities and machine learning tasks: skin lesion classification in images, stigmatizing language classification in Electronic Health Records (EHR), and mortality prediction for ICU tabular data. In each setting, G-AUDIT successfully identifies subtle biases commonly overlooked by traditional qualitative methods, underscoring its practical value in exposing dataset-level risks and supporting the downstream development of reliable AI systems.
- Abstract(参考訳): 人工知能(AI)は現在、エビデンスベースの医療の中心にある。
AIのヘルスケアの台頭に先駆けて、多くの成功談があるが、デプロイメントにおけるAIの重大な欠点と予期せぬ振る舞いに関する報告は、相容れないほど多い。
これらの制限の大きな理由は、非表現型機械学習データセットがトレーニング中の潜伏バイアスを増幅したり、テスト中にそれを隠したりする、アソシエーションベースの学習への依存である。
このようなAIバイアスを予知し防止できる新しいツールを解き放つため、G-AUDITを提案する。
データセットに対する一般属性ユーティリティと検出可能性によるバイアステスト(G-AUDIT)は、トレーニングやテストデータにおけるバイアスの原因に関するターゲット仮説を生成するための、モダリティに依存しないデータセット監査フレームワークである。
本手法では, 患者属性(例, 年齢, 性別)と環境/取得特性(例, 臨床現場, イメージングプロトコル)を含むデータ特性とタスクレベルのアノテーション(例: `labels')の関係について検討する。
G-AUDITは、観測されたデータ属性がショートカット学習やテストデータにどのようなリスクをもたらすかを定量化する。
我々は,画像中の皮膚病変の分類,電子健康記録(EHR)における言語分類の厳密化,およびICU表表データの死亡予測という,3つの異なるモードと機械学習タスクのための大規模医療データセットを解析し,本手法の適用性を示した。
各設定において、G-AUDITは、従来の定性的な方法によって見過ごされる微妙なバイアスをうまく識別し、データセットレベルのリスクを露呈し、信頼性の高いAIシステムの下流開発をサポートする実践的価値を強調する。
関連論文リスト
- AI Alignment in Medical Imaging: Unveiling Hidden Biases Through Counterfactual Analysis [16.21270312974956]
人口統計学などのセンシティブな属性に対する医療画像MLモデルの依存性を評価するための新しい統計フレームワークを提案する。
本稿では,条件付き潜伏拡散モデルと統計的仮説テストを組み合わせて,そのようなバイアスを特定し定量化する実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-28T09:28:25Z) - Explainable AI for Classifying UTI Risk Groups Using a Real-World Linked EHR and Pathology Lab Dataset [0.47517735516852333]
尿路感染症(UTIs)の特徴付けにリンクEHRデータセットを活用する
臨床専門知識からUTIリスク推定フレームワークを導入し,個別の患者タイムラインにまたがってUTIリスクを推定する。
リスクグループ間で臨床および人口統計学的予測値の違いが判明した。
論文 参考訳(メタデータ) (2024-11-26T18:10:51Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
本稿では,説明に基づく帰属手法の効率的かつ解釈可能な代替手段であるプロスペクタヘッドを紹介する。
入力データにおけるクラス固有のパターンの解釈と発見を、プロファイラヘッドがいかに改善できるかを実証する。
論文 参考訳(メタデータ) (2024-02-18T23:01:28Z) - SUDO: a framework for evaluating clinical artificial intelligence systems without ground-truth annotations [3.7525007896336944]
我々は,基幹アノテーションを使わずにAIシステムを評価するためのフレームワークであるSUDOを紹介する。
我々は,SUDOがモデル性能の信頼できるプロキシになりうることを示し,信頼できない予測を識別する。
論文 参考訳(メタデータ) (2024-01-02T18:12:03Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - An AI-Guided Data Centric Strategy to Detect and Mitigate Biases in
Healthcare Datasets [32.25265709333831]
我々は、小さなサンプルサイズ(AEquity)で異なるグループをいかに容易に学習するかを調査することによって、データセットバイアスを評価するために、データ中心、モデルに依存しないタスク非依存のアプローチを生成する。
次に、サブポピュレーション全体にわたるAEq値の体系的分析を適用し、医療における2つの既知の事例において、人種的偏見の特定と顕在化を図った。
AEqは、医療データセットのバイアスを診断し、修正することで、エクイティの前進に適用できる、新しく広く適用可能なメトリクスである。
論文 参考訳(メタデータ) (2023-11-06T17:08:41Z) - Data AUDIT: Identifying Attribute Utility- and Detectability-Induced
Bias in Task Models [8.420252576694583]
医用画像データセットの厳密で定量的なスクリーニングのための第1の手法を提案する。
提案手法は,データセット属性に関連するリスクを,検出性と実用性の観点から分解する。
本手法を用いて, ほぼ知覚不能なバイアス誘発アーティファクトを確実に同定するスクリーニング手法を提案する。
論文 参考訳(メタデータ) (2023-04-06T16:50:15Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - TRAPDOOR: Repurposing backdoors to detect dataset bias in machine
learning-based genomic analysis [15.483078145498085]
データセット内のグループの下位表現は、特定のグループの不正確な予測につながる可能性があるため、システム的識別問題を悪化させる可能性がある。
本稿では,ニューラルネットワークのバックドアであるTRAPDOORを提案する。
実世界のがんデータセットを用いて、すでに白人個人に対して存在するバイアスでデータセットを分析し、データセットにバイアスを人工的に導入する。
論文 参考訳(メタデータ) (2021-08-14T17:02:02Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。