論文の概要: Predictive Representativity: Uncovering Racial Bias in AI-based Skin Cancer Detection
- arxiv url: http://arxiv.org/abs/2507.14176v1
- Date: Thu, 10 Jul 2025 22:21:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-27 08:26:15.941863
- Title: Predictive Representativity: Uncovering Racial Bias in AI-based Skin Cancer Detection
- Title(参考訳): 予測的表現性:AIによる皮膚がん検出における顔面バイアスの発見
- Authors: Andrés Morales-Forero, Lili J. Rueda, Ronald Herrera, Samuel Bassetto, Eric Coatanea,
- Abstract要約: 本稿では,予測表現性(PR)の概念を紹介する。
PRは、データセットの構成から成果レベルのエクイティへと焦点をシフトします。
解析の結果,皮膚光タイプによる性能の相違が明らかとなった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) systems increasingly inform medical decision-making, yet concerns about algorithmic bias and inequitable outcomes persist, particularly for historically marginalized populations. This paper introduces the concept of Predictive Representativity (PR), a framework of fairness auditing that shifts the focus from the composition of the data set to outcomes-level equity. Through a case study in dermatology, we evaluated AI-based skin cancer classifiers trained on the widely used HAM10000 dataset and on an independent clinical dataset (BOSQUE Test set) from Colombia. Our analysis reveals substantial performance disparities by skin phototype, with classifiers consistently underperforming for individuals with darker skin, despite proportional sampling in the source data. We argue that representativity must be understood not as a static feature of datasets but as a dynamic, context-sensitive property of model predictions. PR operationalizes this shift by quantifying how reliably models generalize fairness across subpopulations and deployment contexts. We further propose an External Transportability Criterion that formalizes the thresholds for fairness generalization. Our findings highlight the ethical imperative for post-hoc fairness auditing, transparency in dataset documentation, and inclusive model validation pipelines. This work offers a scalable tool for diagnosing structural inequities in AI systems, contributing to discussions on equity, interpretability, and data justice and fostering a critical re-evaluation of fairness in data-driven healthcare.
- Abstract(参考訳): 人工知能(AI)システムは、医学的な意思決定をますます通知するが、アルゴリズムの偏見や不平等な結果に対する懸念は、特に歴史的に疎外された人口にとって継続する。
本稿では,予測表現性(PR, Predictive Representativity)の概念を紹介する。公正監査の枠組みは,データセットの構成から結果レベルのエクイティへと焦点を移す。
HAM10000データセットとコロンビアの独立した臨床データセット(BOSQUE Test set)で訓練されたAIベースの皮膚がん分類器の評価を行った。
本分析では,画像データに比例するサンプリング結果が得られたにもかかわらず,皮膚光タイプによるパフォーマンスの相違が明らかになり,分類器が常に暗い皮膚の個体に対して低い性能を示した。
我々は、表現性はデータセットの静的な特徴ではなく、モデル予測の動的で文脈に敏感な性質として理解されなければならないと論じる。
PRは、サブポピュレーションとデプロイメントコンテキスト間の公正性を確実に一般化するモデルの定量化によって、このシフトを運用する。
また、公正な一般化のためのしきい値を定式化する外部輸送性基準を提案する。
調査では、ホック後の公正監査、データセットドキュメントの透明性、包括的モデル検証パイプラインの倫理的義務を強調した。
この作業は、AIシステムの構造的不平等を診断するためのスケーラブルなツールを提供し、エクイティ、解釈可能性、データ正義に関する議論に貢献し、データ駆動型医療における公正性に対する批判的な再評価を促進する。
関連論文リスト
- Causally Fair Node Classification on Non-IID Graph Data [9.363036392218435]
本稿では,フェアネスを考慮したMLアルゴリズムにおける課題について述べる。
非IID、グラフベースの設定の見落としている領域に取り組みます。
因果推論のためのメッセージパッシング変分オートエンコーダを開発した。
論文 参考訳(メタデータ) (2025-05-03T02:05:51Z) - AI Alignment in Medical Imaging: Unveiling Hidden Biases Through Counterfactual Analysis [16.21270312974956]
人口統計学などのセンシティブな属性に対する医療画像MLモデルの依存性を評価するための新しい統計フレームワークを提案する。
本稿では,条件付き潜伏拡散モデルと統計的仮説テストを組み合わせて,そのようなバイアスを特定し定量化する実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-28T09:28:25Z) - Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics [8.692647930497936]
我々は、コンフォメーション解析を用いて、視覚変換器に基づく基礎モデルの予測不確かさを定量化する。
基礎モデルの特徴埋め込みの堅牢性を評価するために、公正度測定としてどのように使用できるかを示す。
論文 参考訳(メタデータ) (2025-03-31T08:06:00Z) - Detecting Dataset Bias in Medical AI: A Generalized and Modality-Agnostic Auditing Framework [8.017827642932746]
データセットに対する一般属性ユーティリティと検出可能性によるバイアステスト(G-AUDIT)は、モダリティに依存しないデータセット監査フレームワークである。
本手法は,患者属性を含むデータ特性とタスクレベルのアノテーションの関係について検討する。
G-AUDITは、従来の定性的手法で見過ごされる微妙な偏見をうまく識別する。
論文 参考訳(メタデータ) (2025-03-13T02:16:48Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
最初に、Fair Forgery Detection(FairFD)データセットと呼ばれる専用のデータセットをコントリビュートし、SOTA(Public State-of-the-art)メソッドの人種的偏見を証明する。
我々は、偽りの結果を避けることができる平均的メトリクスと実用正規化メトリクスを含む新しいメトリクスを設計する。
また,有効で堅牢な後処理技術であるBias Pruning with Fair Activations (BPFA)も提案する。
論文 参考訳(メタデータ) (2024-07-19T14:53:18Z) - Bt-GAN: Generating Fair Synthetic Healthdata via Bias-transforming Generative Adversarial Networks [3.3903891679981593]
本稿では,医療領域に特化して設計されたGANベースの合成データジェネレータであるBias-transforming Generative Adversarial Networks (Bt-GAN)について述べる。
以上の結果から,Bt-GANはSOTA精度を向上し,公平性とバイアスの最小化を図った。
論文 参考訳(メタデータ) (2024-04-21T12:16:38Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。