Model-Agnostic Knowledge Guided Correction for Improved Neural Surrogate Rollout
- URL: http://arxiv.org/abs/2503.10048v2
- Date: Fri, 14 Mar 2025 17:02:11 GMT
- Title: Model-Agnostic Knowledge Guided Correction for Improved Neural Surrogate Rollout
- Authors: Bharat Srikishan, Daniel O'Malley, Mohamed Mehana, Nicholas Lubbers, Nikhil Muralidhar,
- Abstract summary: We propose a model-agnostic, RL based, cost-aware model which combines a neural surrogate, RL decision model, and a physics simulator to reduce surrogate rollout error significantly.<n>HyPER learns an intelligent policy that is adaptable to changing physical conditions and resistant to noise corruption.
- Score: 3.006104092368596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling the evolution of physical systems is critical to many applications in science and engineering. As the evolution of these systems is governed by partial differential equations (PDEs), there are a number of computational simulations which resolve these systems with high accuracy. However, as these simulations incur high computational costs, they are infeasible to be employed for large-scale analysis. A popular alternative to simulators are neural network surrogates which are trained in a data-driven manner and are much more computationally efficient. However, these surrogate models suffer from high rollout error when used autoregressively, especially when confronted with training data paucity. Existing work proposes to improve surrogate rollout error by either including physical loss terms directly in the optimization of the model or incorporating computational simulators as `differentiable layers' in the neural network. Both of these approaches have their challenges, with physical loss functions suffering from slow convergence for stiff PDEs and simulator layers requiring gradients which are not always available, especially in legacy simulators. We propose the Hybrid PDE Predictor with Reinforcement Learning (HyPER) model: a model-agnostic, RL based, cost-aware model which combines a neural surrogate, RL decision model, and a physics simulator (with or without gradients) to reduce surrogate rollout error significantly. In addition to reducing in-distribution rollout error by 47%-78%, HyPER learns an intelligent policy that is adaptable to changing physical conditions and resistant to noise corruption. Code available at https://github.com/scailab/HyPER.
Related papers
- Metamizer: a versatile neural optimizer for fast and accurate physics simulations [4.717325308876749]
We introduce Metamizer, a novel neural network that iteratively solves a wide range of physical systems with high accuracy.
We demonstrate that Metamizer achieves unprecedented accuracy for deep learning based approaches.
Our results suggest that Metamizer could have a profound impact on future numerical solvers.
arXiv Detail & Related papers (2024-10-10T11:54:31Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Real-time simulation of viscoelastic tissue behavior with physics-guided
deep learning [0.8250374560598492]
We propose a deep learning method for predicting displacement fields of soft tissues with viselastic properties.
The proposed method achieves a better accuracy over the conventional CNN models.
It is hoped that the present investigation will help in filling the gap in applying deep learning in virtual reality.
arXiv Detail & Related papers (2023-01-11T18:17:10Z) - Deep Physics Corrector: A physics enhanced deep learning architecture
for solving stochastic differential equations [0.0]
We propose a novel gray-box modeling algorithm for physical systems governed by differential equations (SDE)
The proposed approach, referred to as the Deep Physics Corrector (DPC), blends approximate physics represented in terms of SDE with deep neural network (DNN)
We illustrate the performance of the proposed DPC on four benchmark examples from the literature.
arXiv Detail & Related papers (2022-09-20T14:30:07Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.