論文の概要: AgentDAO: Synthesis of Proposal Transactions Via Abstract DAO Semantics
- arxiv url: http://arxiv.org/abs/2503.10099v1
- Date: Thu, 13 Mar 2025 06:52:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:54:20.926971
- Title: AgentDAO: Synthesis of Proposal Transactions Via Abstract DAO Semantics
- Title(参考訳): AgentDAO:抽象DAOセマンティックスによる提案トランザクションの合成
- Authors: Lin Ao, Han Liu, Huafeng Zhang,
- Abstract要約: 本稿では,大規模言語モデルを用いたマルチエージェントシステムと,ガバナンス提案を生成するラベル中心検索アルゴリズムを提案する。
Langが達成した重要な最適化は、トークン要求の低い提案生成を確実に保証する、ユーザ入力のセマンティックアウェアな抽象化である。
実世界の応用に関する予備的な評価は、既存の基礎モデルによる複雑な提案の可能性を反映している。
- 参考スコア(独自算出の注目度): 5.72453247290246
- License:
- Abstract: While the trend of decentralized governance is obvious (cryptocurrencies and blockchains are widely adopted by multiple sovereign countries), initiating governance proposals within Decentralized Autonomous Organizations (DAOs) is still challenging, i.e., it requires providing a low-level transaction payload, therefore posing significant barriers to broad community participation. To address these challenges, we propose a multi-agent system powered by Large Language Models with a novel Label-Centric Retrieval algorithm to automate the translation from natural language inputs into executable proposal transactions. The system incorporates DAOLang, a Domain-Specific Language to simplify the specification of various governance proposals. The key optimization achieved by DAOLang is a semantic-aware abstraction of user input that reliably secures proposal generation with a low level of token demand. A preliminary evaluation on real-world applications reflects the potential of DAOLang in terms of generating complicated types of proposals with existing foundation models, e.g. GPT-4o.
- Abstract(参考訳): 分散型ガバナンスのトレンドは明らかだが(複数の主権国で暗号通貨とブロックチェーンが広く採用されている)、分散自律組織(DAO)内でのガバナンス提案の開始は依然として困難である。
これらの課題に対処するために、自然言語入力から実行可能な提案トランザクションへの翻訳を自動化する新しいラベル中心検索アルゴリズムを用いて、Large Language Modelsを利用したマルチエージェントシステムを提案する。
このシステムにはドメイン特化言語であるDAOLangが組み込まれており、さまざまなガバナンス提案の仕様を簡素化している。
DAOLangが達成した重要な最適化は、トークン要求の低い提案生成を確実に保証する、ユーザ入力のセマンティック・アウェア・抽象化である。
実世界のアプリケーションに関する予備的な評価は、既存の基盤モデルであるg GPT-4oで複雑なタイプの提案を生成するという点で、DAOLangの可能性を反映している。
関連論文リスト
- Instantiation-based Formalization of Logical Reasoning Tasks using Language Models and Logical Solvers [4.897782942277061]
本稿では,SSV(Semantic Self-Verification)を導入し,自然言語から解法の形式言語への推論問題を正確に定式化する手法を提案する。
SSVは一貫性に基づくアプローチを用いて、モデルによって生成され、解決者によって検証される具体的なインスタンス化を用いて、問題の強力な抽象的な形式化を生成する。
このような*ほぼ確実な推論*は、多くの場合、手動検証の必要性を減らすための新しいアプローチとして提案され、より信頼性が高く自律的なAI推論システムに近づきます。
論文 参考訳(メタデータ) (2025-01-28T14:04:49Z) - Deliberate Reasoning in Language Models as Structure-Aware Planning with an Accurate World Model [14.480267340831542]
高精度世界モデル(SWAP)による構造認識計画
SWAPは構造化知識表現と学習計画を統合する。
SWAPは,数理推論,論理推論,コーディングタスクなど,多種多様な推論集約型ベンチマークで評価される。
論文 参考訳(メタデータ) (2024-10-04T04:23:36Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
提案するフレームワークは、検索拡張生成(RAG)を組み込んで、ドメイン固有の知識を取得してソリューションを生成するシステムの能力を高める。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - MetaKP: On-Demand Keyphrase Generation [52.48698290354449]
オンデマンドのキーフレーズ生成は,特定のハイレベルな目標や意図に従うキーフレーズを必要とする新しいパラダイムである。
そこで我々は,4つのデータセット,7500のドキュメント,3760の目標からなる大規模ベンチマークであるMetaKPを紹介した。
ソーシャルメディアからの流行事象検出に応用して,一般のNLP基盤として機能する可能性を示す。
論文 参考訳(メタデータ) (2024-06-28T19:02:59Z) - HUWSOD: Holistic Self-training for Unified Weakly Supervised Object Detection [66.42229859018775]
我々は,HUWSOD(HuWSOD)と呼ばれる,統一・高容量弱教師付きオブジェクト検出(WSOD)ネットワークを導入する。
HUWSODには、自己管理された提案生成器と、従来のオブジェクト提案を置き換えるために、マルチレートで再構成されたピラミッドを備えたオートエンコーダ提案生成器が組み込まれている。
提案手法は,よく設計されたオフラインオブジェクト提案と大きく異なるが,WSOD訓練には有効であることを示す。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - Learnable Item Tokenization for Generative Recommendation [78.30417863309061]
LETTER (Larnable Tokenizer for generaTivE Recommendation) を提案する。
LETTERは、セマンティック正規化のためのResidual Quantized VAE、協調正規化のためのコントラストアライメント損失、コードの割り当てバイアスを軽減するための多様性損失を組み込んでいる。
論文 参考訳(メタデータ) (2024-05-12T15:49:38Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Controlling Large Language Model-based Agents for Large-Scale
Decision-Making: An Actor-Critic Approach [28.477463632107558]
我々はLLaMACと呼ばれるモジュラーフレームワークを開発し、大規模言語モデルにおける幻覚とマルチエージェントシステムにおける協調に対処する。
LLaMACは、人間の脳にあるものに似た値分布をコードし、内部および外部からのフィードバック機構を利用して、モジュール間の協調と反復的推論を促進する。
論文 参考訳(メタデータ) (2023-11-23T10:14:58Z) - ProphNet: Efficient Agent-Centric Motion Forecasting with
Anchor-Informed Proposals [6.927103549481412]
モーション予測は自動運転システムにおいて重要なモジュールである。
マルチソース入力の不均一性、エージェント動作のマルチモーダリティ、オンボードデプロイメントに必要な低レイテンシのため、このタスクは極めて難しい。
本稿では,効率的なマルチモーダル動作予測のためのアンカー情報を用いたエージェント中心モデルを提案する。
論文 参考訳(メタデータ) (2023-03-21T17:58:28Z) - Learning to Selectively Learn for Weakly-supervised Paraphrase
Generation [81.65399115750054]
弱監督データを用いた高品質なパラフレーズを生成するための新しい手法を提案する。
具体的には、弱制御されたパラフレーズ生成問題に以下のように取り組む。
検索に基づく擬似パラフレーズ展開により、豊富なラベル付き並列文を得る。
提案手法は,既存の教師なしアプローチよりも大幅に改善され,教師付き最先端技術と同等の性能を示す。
論文 参考訳(メタデータ) (2021-09-25T23:31:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。