論文の概要: Deliberate Reasoning in Language Models as Structure-Aware Planning with an Accurate World Model
- arxiv url: http://arxiv.org/abs/2410.03136v3
- Date: Tue, 18 Feb 2025 18:52:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:56:39.611459
- Title: Deliberate Reasoning in Language Models as Structure-Aware Planning with an Accurate World Model
- Title(参考訳): 正確な世界モデルを用いた構造を考慮した言語モデルの再検討
- Authors: Siheng Xiong, Ali Payani, Yuan Yang, Faramarz Fekri,
- Abstract要約: 高精度世界モデル(SWAP)による構造認識計画
SWAPは構造化知識表現と学習計画を統合する。
SWAPは,数理推論,論理推論,コーディングタスクなど,多種多様な推論集約型ベンチマークで評価される。
- 参考スコア(独自算出の注目度): 14.480267340831542
- License:
- Abstract: Enhancing the reasoning capabilities of language models (LMs) remains a key challenge, especially for tasks that require complex, multi-step decision-making where existing Chain-of-Thought (CoT) approaches struggle with consistency and verification. In this paper, we propose a novel reasoning framework, referred to as Structure-aware Planning with an Accurate World Model (SWAP), that integrates structured knowledge representation with learned planning. Unlike prior methods that rely purely on natural language reasoning, SWAP leverages entailment graphs to encode structured dependencies and enable symbolic verification of intermediate steps. To systematically construct and update the graph, SWAP employs a policy model to propose candidate expansions and a world model to predict structural updates. To improve accuracy, the world model generates multiple alternative updates, and a discriminator re-ranks them based on plausibility. To encourage diverse exploration, we introduce Diversity-based Modelling (DM), which samples candidates from the remaining probability mass after removing previously sampled candidates from the original policy distribution. Additionally, SWAP improves the discrimination accuracy through Contrastive Ranking (CR), which directly compares candidates within prompts and incorporates meta-knowledge to improve ranking quality. We evaluate SWAP across diverse reasoning-intensive benchmarks including math reasoning, logical reasoning, and coding tasks. Extensive experiments demonstrate that SWAP significantly improves upon the base models and consistently outperforms existing reasoning methods.
- Abstract(参考訳): 特に、既存のChain-of-Thought(CoT)アプローチが一貫性と検証に苦しむ、複雑で多段階の意思決定を必要とするタスクにおいて、言語モデル(LM)の推論能力の強化は依然として重要な課題である。
本稿では,構造化知識表現と学習計画を統合した,構造認識計画(Structure-Aware Planning with a Accurate World Model,SWAP)を提案する。
純粋に自然言語の推論に依存する従来の手法とは異なり、SWAPはエンテーメントグラフを利用して構造化された依存関係を符号化し、中間ステップのシンボリック検証を可能にする。
グラフを体系的に構築および更新するために、SWAPは、候補拡張を提案するポリシーモデルと、構造的更新を予測する世界モデルを採用している。
精度を向上させるために、世界モデルは複数の代替更新を生成し、識別器は妥当性に基づいてそれらを再ランクする。
多様な探索を促進するために,従来の政策分布から標本化された候補を除去した後,残りの確率質量から候補を抽出するダイバーシティ・ベース・モデリング(DM)を導入する。
さらに、SWAPはコントラストランク(CR)による識別精度を向上し、プロンプト内の候補を直接比較し、メタ知識を取り入れてランキング品質を向上させる。
SWAPは,数理推論,論理推論,コーディングタスクなど,多種多様な推論集約型ベンチマークで評価される。
大規模な実験により、SWAPはベースモデルを大幅に改善し、既存の推論手法より一貫して優れていることが示された。
関連論文リスト
- Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation [24.081573908824353]
一階述語論理(FOL)推論はインテリジェントシステムにおいて重要である。
既存のベンチマークは、広範囲の人間のアノテーションや手作りテンプレートに依存していることが多い。
本稿では,大言語モデルの生成強度を記号型プローサの厳密性と精度で相乗化するProverGenという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-10T15:31:54Z) - Exploring Robustness of LLMs to Sociodemographically-Conditioned Paraphrasing [7.312170216336085]
我々は、社会デミノグラフィーの次元にまたがる幅広いバリエーションを探求するために、より広いアプローチを取る。
我々はSocialIQAデータセットを拡張し、ソシオデミノグラフィースタイルを条件とした多様なパラフレーズセットを作成する。
人口統計学的パラフレーズが言語モデルの性能に大きく影響していることが判明した。
論文 参考訳(メタデータ) (2025-01-14T17:50:06Z) - Counterfactual Samples Constructing and Training for Commonsense Statements Estimation [17.970740197590693]
可塑性推定は、言語モデルが現実世界を客観的に理解できるようにする上で重要な役割を果たす。
理想的なPEモデルの2つの重要な特徴を欠いている。
本稿では,Commonsense Counterfactual Samples Generatingと呼ばれる新しいモデル非依存手法を提案する。
論文 参考訳(メタデータ) (2024-12-29T20:18:52Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
本稿では,動的かつ反復的なフレームワークであるAdaptive Promptingを紹介する。
その結果、Adaptive Promptingは、算術的推論(GSM8K、MultiArithm)、論理的推論、コモンセンスタスクなど、様々な推論ベンチマークのパフォーマンスを著しく向上させることを示した。
提案手法は,計算効率を維持しつつ,GPT-4などの大規模モデルと競合する性能を実現する。
論文 参考訳(メタデータ) (2024-10-10T17:14:36Z) - A Large-Scale Evaluation of Speech Foundation Models [110.95827399522204]
音声処理ユニバーサルパフォーマンスベンチマーク(SUPERB)を構築し,基礎モデルパラダイムの有効性について検討する。
凍結基盤モデルを用いてSUPERBにおける音声処理タスクに対処する統合マルチタスクフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-15T00:03:16Z) - DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-Regressive Selective Replacement Ascent (ASRA)は、決定点プロセス(DPP)と品質と類似性の両方に基づいてプロンプトを選択する離散最適化アルゴリズムである。
6種類の事前学習言語モデルに対する実験結果から,ASRAによる有害成分の抽出の有効性が示された。
論文 参考訳(メタデータ) (2024-03-01T05:28:06Z) - HGOT: Hierarchical Graph of Thoughts for Retrieval-Augmented In-Context Learning in Factuality Evaluation [20.178644251662316]
本稿では,文脈内学習における関連する文節の検索を促進するために,階層的思考グラフ(HGOT)を導入する。
このフレームワークは、複雑なクエリを管理可能なサブクエリに分割する、分割/クエリ戦略を採用している。
それは、最近提案された引用リコールと精度の指標を取り入れた、回答の選択のための自己一貫性の過半数投票を洗練する。
論文 参考訳(メタデータ) (2024-02-14T18:41:19Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNは、クエリ許可を通じてターゲットモデルを複製するための悪行であるモデル盗難攻撃に対して脆弱である。
異なるシナリオに対応するために,3つのモデルステルス攻撃を導入する。
論文 参考訳(メタデータ) (2023-12-18T05:42:31Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。