論文の概要: Improving Diffusion-based Inverse Algorithms under Few-Step Constraint via Learnable Linear Extrapolation
- arxiv url: http://arxiv.org/abs/2503.10103v3
- Date: Tue, 21 Oct 2025 12:37:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:04.533196
- Title: Improving Diffusion-based Inverse Algorithms under Few-Step Constraint via Learnable Linear Extrapolation
- Title(参考訳): 学習可能な線形外挿によるFew-Step Constraint下での拡散に基づく逆アルゴリズムの改良
- Authors: Jiawei Zhang, Ziyuan Liu, Leon Yan, Gen Li, Yuantao Gu,
- Abstract要約: 拡散に基づく逆アルゴリズムは、様々な逆問題に対して顕著な性能を示してきたが、多くのデノナイジングステップに依存しているため、計算コストが高い。
本稿では,Learable Linear Extrapolation (LLE) を提案する。
- 参考スコア(独自算出の注目度): 20.87506837742038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion-based inverse algorithms have shown remarkable performance across various inverse problems, yet their reliance on numerous denoising steps incurs high computational costs. While recent developments of fast diffusion ODE solvers offer effective acceleration for diffusion sampling without observations, their application in inverse problems remains limited due to the heterogeneous formulations of inverse algorithms and their prevalent use of approximations and heuristics, which often introduce significant errors that undermine the reliability of analytical solvers. In this work, we begin with an analysis of ODE solvers for inverse problems that reveals a linear combination structure of approximations for the inverse trajectory. Building on this insight, we propose a canonical form that unifies a broad class of diffusion-based inverse algorithms and facilitates the design of more generalizable solvers. Inspired by the linear subspace search strategy, we propose Learnable Linear Extrapolation (LLE), a lightweight approach that universally enhances the performance of any diffusion-based inverse algorithm conforming to our canonical form. LLE optimizes the combination coefficients to refine current predictions using previous estimates, alleviating the sensitivity of analytical solvers for inverse algorithms. Extensive experiments demonstrate consistent improvements of the proposed LLE method across multiple algorithms and tasks, indicating its potential for more efficient solutions and boosted performance of diffusion-based inverse algorithms with limited steps. Codes for reproducing our experiments are available at https://github.com/weigerzan/LLE_inverse_problem.
- Abstract(参考訳): 拡散に基づく逆アルゴリズムは、様々な逆問題に対して顕著な性能を示してきたが、多くのデノナイジングステップに依存しているため、計算コストが高い。
近年の高速拡散ODE解法は, 拡散サンプリングを観測せずに効果的に高速化するが, 逆アルゴリズムの不均一な定式化や近似とヒューリスティックスの利用により, 逆問題への応用は限定的であり, しばしば解析的解法の信頼性を損なう重大な誤りを引き起こす。
本研究は,逆軌道の近似の線形結合構造を明らかにする逆問題に対するODEソルバの解析から始める。
この知見に基づいて、拡散に基づく逆アルゴリズムの幅広いクラスを統一し、より一般化可能な解法の設計を容易にする正準形式を提案する。
線形部分空間探索法に着想を得たLearable Linear Extrapolation (LLE) を提案する。
LLEは結合係数を最適化し、過去の推定値を用いて電流予測を洗練し、逆アルゴリズムに対する解析解の感度を緩和する。
大規模な実験では、複数のアルゴリズムとタスクにまたがって提案されたLLE法が一貫した改善を示し、より効率的な解法の可能性を示し、限られたステップで拡散に基づく逆アルゴリズムの性能を向上した。
実験を再現するためのコードはhttps://github.com/weigerzan/LLE_inverse_problem.comで公開されている。
関連論文リスト
- Gaussian is All You Need: A Unified Framework for Solving Inverse Problems via Diffusion Posterior Sampling [16.683393726483978]
拡散モデルは、複雑なデータ分布をモデル化することによって、様々な高品質な画像を生成することができる。
既存の拡散法の多くは拡散逆サンプリングプロセスにデータ一貫性ステップを統合する。
既存の近似は不十分か計算的に非効率であることを示す。
論文 参考訳(メタデータ) (2024-09-13T15:20:03Z) - Inverse Problems with Diffusion Models: A MAP Estimation Perspective [5.002087490888723]
コンピュータでは、インペイント、デブロアリング、超解像などの画像復元タスクを逆問題として形式的にモデル化することができる。
本研究では,連続時間拡散モデルの逆条件生成過程をモデル化するMAP推定フレームワークを提案する。
提案手法を用いて,画像復元のための効率的なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-07-27T15:41:13Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
そこで本稿では, 償却変分推論の観点から, 拡散による逆問題の解法を提案する。
我々の償却推論は、測定結果を対応するクリーンデータの暗黙の後方分布に直接マッピングする関数を学習し、未知の計測でも単一ステップの後方サンプリングを可能にする。
論文 参考訳(メタデータ) (2024-07-23T02:14:18Z) - ODE-DPS: ODE-based Diffusion Posterior Sampling for Inverse Problems in Partial Differential Equation [1.8356973269166506]
本稿では, PDE から生じる逆問題を解決するために, 教師なし逆転法を提案する。
提案手法はベイズ逆転フレームワーク内で動作し,後続分布の解法を条件付き生成過程として扱う。
インバージョン結果の精度を高めるために,ODEベースの拡散インバージョンアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-21T00:57:13Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
近年の拡散モデルは、特定の逆問題に対して再訓練することなく、ノイズの多い線形逆問題に対する有望なゼロショット解を提供する。
この発見に触発されて、我々は、最大推定値から決定されるより原理化された共分散を用いて、最近の手法を改善することを提案する。
論文 参考訳(メタデータ) (2024-02-03T13:35:39Z) - Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency [7.671153315762146]
画素空間におけるトレーニング拡散モデルは、データ集約的かつ計算的に要求される。
非常に低次元空間で動作する潜在拡散モデルは、これらの課題に対する解決策を提供する。
我々は,事前学習した潜在拡散モデルを用いて,一般的な逆問題を解決するアルゴリズムであるtextitReSampleを提案する。
論文 参考訳(メタデータ) (2023-07-16T18:42:01Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
本稿では,事前学習した潜在拡散モデルを利用した線形逆問題の解法を初めて提案する。
線形モデル設定において,証明可能なサンプル回復を示すアルゴリズムを理論的に解析する。
論文 参考訳(メタデータ) (2023-07-02T17:21:30Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
本稿では, 拡散サンプリング法とクリロフ部分空間法を相乗的に組み合わせた, 新規で効率的な拡散サンプリング手法を提案する。
具体的には、ツイーディの公式による分母化標本における接空間がクリロフ部分空間を成すならば、その分母化データによるCGは、接空間におけるデータの整合性更新を確実に維持する。
提案手法は,従来の最先端手法よりも80倍以上高速な推論時間を実現する。
論文 参考訳(メタデータ) (2023-03-10T07:42:49Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
我々は、後方サンプリングの近似により、雑音(非線形)逆問題に対処するために拡散解法を拡張した。
本手法は,拡散モデルが様々な計測ノイズ統計を組み込むことができることを示す。
論文 参考訳(メタデータ) (2022-09-29T11:12:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
我々は,現在の解法がデータ多様体からサンプルパスを逸脱し,エラーが蓄積することを示す。
この問題に対処するため、多様体の制約に着想を得た追加の補正項を提案する。
本手法は理論上も経験上も従来の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-02T09:06:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。