論文の概要: Singular Value Fine-tuning for Few-Shot Class-Incremental Learning
- arxiv url: http://arxiv.org/abs/2503.10214v1
- Date: Thu, 13 Mar 2025 09:57:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:52:53.945386
- Title: Singular Value Fine-tuning for Few-Shot Class-Incremental Learning
- Title(参考訳): Few-Shot Class-Incremental Learningのための特異値微調整
- Authors: Zhiwu Wang, Yichen Wu, Renzhen Wang, Haokun Lin, Quanziang Wang, Qian Zhao, Deyu Meng,
- Abstract要約: CIL(Class-Incremental Learning)は,従来学習していたクラスを,新たなクラスを取り入れたまま忘れてしまうことを防ぐことを目的としている。
FSCIL(SVFCL)のための特異値ファインタニングを提案する。
SVFCLは基礎モデルの重みに特異値分解を適用し、各タスクの特異値を微調整しながら特異ベクトルを固定し、それらをマージする。
- 参考スコア(独自算出の注目度): 38.777602828340356
- License:
- Abstract: Class-Incremental Learning (CIL) aims to prevent catastrophic forgetting of previously learned classes while sequentially incorporating new ones. The more challenging Few-shot CIL (FSCIL) setting further complicates this by providing only a limited number of samples for each new class, increasing the risk of overfitting in addition to standard CIL challenges. While catastrophic forgetting has been extensively studied, overfitting in FSCIL, especially with large foundation models, has received less attention. To fill this gap, we propose the Singular Value Fine-tuning for FSCIL (SVFCL) and compared it with existing approaches for adapting foundation models to FSCIL, which primarily build on Parameter Efficient Fine-Tuning (PEFT) methods like prompt tuning and Low-Rank Adaptation (LoRA). Specifically, SVFCL applies singular value decomposition to the foundation model weights, keeping the singular vectors fixed while fine-tuning the singular values for each task, and then merging them. This simple yet effective approach not only alleviates the forgetting problem but also mitigates overfitting more effectively while significantly reducing trainable parameters. Extensive experiments on four benchmark datasets, along with visualizations and ablation studies, validate the effectiveness of SVFCL. The code will be made available.
- Abstract(参考訳): CIL(Class-Incremental Learning)は,従来学習していたクラスを,新たなクラスを順次導入しながら,破滅的な忘れ込みを防止することを目的としている。
より困難なFew-shot CIL (FSCIL)設定では、新しいクラスごとに限られた数のサンプルしか提供せず、標準のCILチャレンジに加えてオーバーフィッティングのリスクを高めることで、さらに複雑になる。
破滅的な忘れ物の研究が盛んに行われているが、FSCILにおける過度な適合、特に大きな基礎モデルでは、あまり注目されていない。
このギャップを埋めるために,FSCIL (SVFCL) の特異値ファインタニング(Singular Value Fine-tuning) を提案し,FSCIL に基礎モデルを適応させる既存のアプローチと比較した。
具体的には、SVFCLは基礎モデルの重みに特異値分解を適用し、各タスクの特異値を微調整しながら特異ベクトルを固定し、それらをマージする。
この単純で効果的なアプローチは、忘れる問題を緩和するだけでなく、オーバーフィッティングを効果的に軽減し、トレーニング可能なパラメータを著しく削減する。
4つのベンチマークデータセットに対する大規模な実験は、可視化とアブレーション研究とともに、SVFCLの有効性を検証する。
コードは利用可能になります。
関連論文リスト
- SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training [68.7896349660824]
本稿では,Seq FTのレンズからの進行オーバーフィッティング問題を詳細に解析する。
過度に高速な表現学習と偏りのある分類層がこの問題を構成することを考慮し、先進的なSlow Learner with Alignment(S++)フレームワークを導入する。
提案手法は,バックボーンパラメータの学習率を選択的に減少させるスローラーナーと,ポストホック方式で不規則な分類層を整列させるアライメントを含む。
論文 参考訳(メタデータ) (2024-08-15T17:50:07Z) - FeTT: Continual Class Incremental Learning via Feature Transformation Tuning [19.765229703131876]
継続的学習(CL)は、静的で囲われた環境から動的で複雑なシナリオまで、ディープモデルを拡張することを目的としている。
最近のCLモデルは、パラメータ効率の良い微調整戦略を持つ事前学習モデルの利用に徐々に移行している。
本稿では,すべてのタスクにまたがる非パラメトリック微調整バックボーン機能に対するFeTTモデルを提案する。
論文 参考訳(メタデータ) (2024-05-20T06:33:50Z) - FeTrIL++: Feature Translation for Exemplar-Free Class-Incremental
Learning with Hill-Climbing [3.533544633664583]
EFCIL(Exemplar-free class-incremental Learning)は、主に破滅的な忘れが原因で大きな課題を提起する。
従来のEFCILのアプローチは、連続した微調整や安定性を通じて、プラスチックのモデルに傾くのが一般的である。
本稿では,様々なオーバーサンプリング手法と動的最適化手法の有効性を検討するための基礎的なFeTrILフレームワークを構築した。
論文 参考訳(メタデータ) (2024-03-12T08:34:05Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
クラス増分学習は,限定された新規クラスサンプルを用いて,新規クラスを継続的に認識することを目的としている。
最近の手法では,段階的なセッションで特徴抽出器を微調整することにより,ベースクラスとインクリメンタルクラスの精度の不均衡を緩和している。
本研究では,FSCIL問題におけるモデルバイアスを緩和する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-01T10:37:41Z) - Enhanced Few-Shot Class-Incremental Learning via Ensemble Models [34.84881941101568]
クラス増分学習(class-incremental learning)は、新しいクラスを限られたトレーニングデータに継続的に適合させることを目的としている。
主な課題は、珍しい新しいトレーニングサンプルを過度に適合させ、古いクラスを忘れることである。
本稿では,データ拡張と協調して一般化を促進する新しいアンサンブルモデルフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-14T06:07:07Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - Strong Baselines for Parameter Efficient Few-Shot Fine-tuning [50.83426196335385]
FSC (Few-shot Classification) は、事前訓練(メタトレーニング)フェーズの後にクラス毎にいくつかの例を与えられた新しいクラスを学習する。
近年の研究では、新しいテストクラスで事前訓練された視覚変換器(ViT)を微調整することが、FSCにとって強力なアプローチであることが示されている。
しかし、微調整のViTは、時間、計算、ストレージに費用がかかる。
これにより、Transformerのパラメータのごく一部だけを微調整するPEFT法が考案された。
論文 参考訳(メタデータ) (2023-04-04T16:14:39Z) - Learning with Multiclass AUC: Theory and Algorithms [141.63211412386283]
ROC曲線 (AUC) の下の領域は、不均衡学習やレコメンダシステムといった問題に対するよく知られたランキング基準である。
本稿では,マルチクラスAUCメトリクスを最適化することで,多クラススコアリング関数を学習する問題について検討する。
論文 参考訳(メタデータ) (2021-07-28T05:18:10Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。