CoStoDet-DDPM: Collaborative Training of Stochastic and Deterministic Models Improves Surgical Workflow Anticipation and Recognition
- URL: http://arxiv.org/abs/2503.10216v1
- Date: Thu, 13 Mar 2025 09:59:05 GMT
- Title: CoStoDet-DDPM: Collaborative Training of Stochastic and Deterministic Models Improves Surgical Workflow Anticipation and Recognition
- Authors: Kaixiang Yang, Xin Li, Qiang Li, Zhiwei Wang,
- Abstract summary: We introduce an innovative framework that incorporates inherent modeling through a denoising diffusion probabilistic model (DDPM)<n>At the heart of our approach is a collaborative co-training paradigm.<n>Experiments on the Cholec80 dataset show that for the anticipation task, our method achieves a 16% reduction in eMAE compared to state-of-the-art approaches.
- Score: 12.360775476995169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anticipating and recognizing surgical workflows are critical for intelligent surgical assistance systems. However, existing methods rely on deterministic decision-making, struggling to generalize across the large anatomical and procedural variations inherent in real-world surgeries.In this paper, we introduce an innovative framework that incorporates stochastic modeling through a denoising diffusion probabilistic model (DDPM) into conventional deterministic learning for surgical workflow analysis. At the heart of our approach is a collaborative co-training paradigm: the DDPM branch captures procedural uncertainties to enrich feature representations, while the task branch focuses on predicting surgical phases and instrument usage.Theoretically, we demonstrate that this mutual refinement mechanism benefits both branches: the DDPM reduces prediction errors in uncertain scenarios, and the task branch directs the DDPM toward clinically meaningful representations. Notably, the DDPM branch is discarded during inference, enabling real-time predictions without sacrificing accuracy.Experiments on the Cholec80 dataset show that for the anticipation task, our method achieves a 16% reduction in eMAE compared to state-of-the-art approaches, and for phase recognition, it improves the Jaccard score by 1.0%. Additionally, on the AutoLaparo dataset, our method achieves a 1.5% improvement in the Jaccard score for phase recognition, while also exhibiting robust generalization to patient-specific variations. Our code and weight are available at https://github.com/kk42yy/CoStoDet-DDPM.
Related papers
- Primary Care Diagnoses as a Reliable Predictor for Orthopedic Surgical Interventions [0.10624941710159722]
Referral workflow inefficiencies contribute to suboptimal patient outcomes and higher healthcare costs.<n>In this study, we investigated the possibility of predicting procedural needs based on primary care diagnostic entries.
arXiv Detail & Related papers (2025-02-06T17:15:12Z) - ETSM: Automating Dissection Trajectory Suggestion and Confidence Map-Based Safety Margin Prediction for Robot-assisted Endoscopic Submucosal Dissection [10.2380174289706]
We create the ESD Trajectory and Confidence Map-based Safety (ETSM) dataset with $1849$ short clips, focusing on submucosal dissection with a dual-arm robotic system.<n>We also introduce a framework that combines optimal dissection trajectory prediction with a confidence map-based safety margin.<n>Our approach bridges gaps in current research by improving prediction accuracy and enhancing the safety of the dissection process.
arXiv Detail & Related papers (2024-11-28T03:19:18Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - Pre-Training with Diffusion models for Dental Radiography segmentation [0.0]
We propose a straightforward pre-training method for semantic segmentation.
Our approach achieves remarkable performance in terms of label efficiency.
Our experimental results on the segmentation of dental radiographs demonstrate that the proposed method is competitive with state-of-the-art pre-training methods.
arXiv Detail & Related papers (2023-07-26T09:33:24Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Safe Deep RL for Intraoperative Planning of Pedicle Screw Placement [61.28459114068828]
We propose an intraoperative planning approach for robotic spine surgery that leverages real-time observation for drill path planning based on Safe Deep Reinforcement Learning (DRL)
Our approach was capable of achieving 90% bone penetration with respect to the gold standard (GS) drill planning.
arXiv Detail & Related papers (2023-05-09T11:42:53Z) - Quality control for more reliable integration of deep learning-based
image segmentation into medical workflows [0.23609258021376836]
We present an analysis of state-of-the-art automatic quality control (QC) approaches to estimate the certainty of their outputs.
We validated the most promising approaches on a brain image segmentation task identifying white matter hyperintensities (WMH) in magnetic resonance imaging data.
arXiv Detail & Related papers (2021-12-06T16:30:43Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Efficient Learning and Decoding of the Continuous-Time Hidden Markov
Model for Disease Progression Modeling [119.50438407358862]
We present the first complete characterization of efficient EM-based learning methods for CT-HMM models.
We show that EM-based learning consists of two challenges: the estimation of posterior state probabilities and the computation of end-state conditioned statistics.
We demonstrate the use of CT-HMMs with more than 100 states to visualize and predict disease progression using a glaucoma dataset and an Alzheimer's disease dataset.
arXiv Detail & Related papers (2021-10-26T20:06:05Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.