Efficient Learning and Decoding of the Continuous-Time Hidden Markov
Model for Disease Progression Modeling
- URL: http://arxiv.org/abs/2110.13998v1
- Date: Tue, 26 Oct 2021 20:06:05 GMT
- Title: Efficient Learning and Decoding of the Continuous-Time Hidden Markov
Model for Disease Progression Modeling
- Authors: Yu-Ying Liu, Alexander Moreno, Maxwell A. Xu, Shuang Li, Jena C.
McDaniel, Nancy C. Brady, Agata Rozga, Fuxin Li, Le Song, James M. Rehg
- Abstract summary: We present the first complete characterization of efficient EM-based learning methods for CT-HMM models.
We show that EM-based learning consists of two challenges: the estimation of posterior state probabilities and the computation of end-state conditioned statistics.
We demonstrate the use of CT-HMMs with more than 100 states to visualize and predict disease progression using a glaucoma dataset and an Alzheimer's disease dataset.
- Score: 119.50438407358862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Continuous-Time Hidden Markov Model (CT-HMM) is an attractive approach to
modeling disease progression due to its ability to describe noisy observations
arriving irregularly in time. However, the lack of an efficient parameter
learning algorithm for CT-HMM restricts its use to very small models or
requires unrealistic constraints on the state transitions. In this paper, we
present the first complete characterization of efficient EM-based learning
methods for CT-HMM models, as well as the first solution to decoding the
optimal state transition sequence and the corresponding state dwelling time. We
show that EM-based learning consists of two challenges: the estimation of
posterior state probabilities and the computation of end-state conditioned
statistics. We solve the first challenge by reformulating the estimation
problem as an equivalent discrete time-inhomogeneous hidden Markov model. The
second challenge is addressed by adapting three distinct approaches from the
continuous time Markov chain (CTMC) literature to the CT-HMM domain.
Additionally, we further improve the efficiency of the most efficient method by
a factor of the number of states. Then, for decoding, we incorporate a
state-of-the-art method from the (CTMC) literature, and extend the end-state
conditioned optimal state sequence decoding to the CT-HMM case with the
computation of the expected state dwelling time. We demonstrate the use of
CT-HMMs with more than 100 states to visualize and predict disease progression
using a glaucoma dataset and an Alzheimer's disease dataset, and to decode and
visualize the most probable state transition trajectory for individuals on the
glaucoma dataset, which helps to identify progressing phenotypes in a
comprehensive way. Finally, we apply the CT-HMM modeling and decoding strategy
to investigate the progression of language acquisition and development.
Related papers
- Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
General state-space models (SSMs) are widely used in statistical machine learning and are among the most classical generative models for sequential time-series data.
Online sequential IWAE (OSIWAE) allows for online learning of both model parameters and a Markovian recognition model for inferring latent states.
This approach is more theoretically well-founded than recently proposed online variational SMC methods.
arXiv Detail & Related papers (2024-11-04T16:12:37Z) - A Generative Framework for Predictive Modeling of Multiple Chronic Conditions Using Graph Variational Autoencoder and Bandit-Optimized Graph Neural Network [0.0]
Predicting the emergence of multiple chronic conditions (MCC) is crucial for early intervention and personalized healthcare.
Graph neural networks (GNNs) are effective methods for modeling complex graph data, such as those found in MCC.
We propose a novel generative framework for GNNs that constructs a representative underlying graph structure by utilizing the distribution of the data.
arXiv Detail & Related papers (2024-09-20T17:26:38Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising
Diffusion Models [53.67562579184457]
This paper focuses on probabilistic STG forecasting, which is challenging due to the difficulty in modeling uncertainties and complex dependencies.
We present the first attempt to generalize the popular denoising diffusion models to STGs, leading to a novel non-autoregressive framework called DiffSTG.
Our approach combines the intrinsic-temporal learning capabilities STNNs with the uncertainty measurements of diffusion models.
arXiv Detail & Related papers (2023-01-31T13:42:36Z) - COPER: Continuous Patient State Perceiver [13.735956129637945]
We propose a novel COntinuous patient state PERceiver model, called COPER, to cope with irregular time-series in EHRs.
neural ordinary differential equations (ODEs) help COPER to generate regular time-series to feed to Perceiver model.
To evaluate the performance of the proposed model, we use in-hospital mortality prediction task on MIMIC-III dataset.
arXiv Detail & Related papers (2022-08-05T14:32:57Z) - Temporal Clustering with External Memory Network for Disease Progression
Modeling [8.015263440307631]
Disease progression modeling (DPM) involves using mathematical frameworks to quantitatively measure the severity of how certain disease progresses.
DPM is useful in many ways such as predicting health state, categorizing disease stages, and assessing patients disease trajectory etc.
arXiv Detail & Related papers (2021-09-29T02:32:06Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
We propose an end-to-end deep learning approach for automated diagnosis of Alzheimer's disease (AD) and localization of important brain regions related to the disease from sMRI data.
Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI)
The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and 3D CNN methods.
arXiv Detail & Related papers (2021-07-28T07:19:00Z) - Temporal Cascade and Structural Modelling of EHRs for Granular
Readmission Prediction [10.943928059802174]
We propose a novel model, MEDCAS, to model temporal cascade relationships.
MEDCAS integrates point processes in modelling visit types and time gaps into an attention-based sequence-to-sequence learning model.
Experiments on three real-world EHR datasets have been performed and the results demonstrate ttexttMEDCAS outperforms state-of-the-art models in both tasks.
arXiv Detail & Related papers (2021-02-04T13:02:04Z) - Scaling Hidden Markov Language Models [118.55908381553056]
This work revisits the challenge of scaling HMMs to language modeling datasets.
We propose methods for scaling HMMs to massive state spaces while maintaining efficient exact inference, a compact parameterization, and effective regularization.
arXiv Detail & Related papers (2020-11-09T18:51:55Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.