Primary Care Diagnoses as a Reliable Predictor for Orthopedic Surgical Interventions
- URL: http://arxiv.org/abs/2502.04423v1
- Date: Thu, 06 Feb 2025 17:15:12 GMT
- Title: Primary Care Diagnoses as a Reliable Predictor for Orthopedic Surgical Interventions
- Authors: Khushboo Verma, Alan Michels, Ergi Gumusaneli, Shilpa Chitnis, Smita Sinha Kumar, Christopher Thompson, Lena Esmail, Guruprasath Srinivasan, Chandini Panchada, Sushovan Guha, Satwant Kumar,
- Abstract summary: Referral workflow inefficiencies contribute to suboptimal patient outcomes and higher healthcare costs.
In this study, we investigated the possibility of predicting procedural needs based on primary care diagnostic entries.
- Score: 0.10624941710159722
- License:
- Abstract: Referral workflow inefficiencies, including misaligned referrals and delays, contribute to suboptimal patient outcomes and higher healthcare costs. In this study, we investigated the possibility of predicting procedural needs based on primary care diagnostic entries, thereby improving referral accuracy, streamlining workflows, and providing better care to patients. A de-identified dataset of 2,086 orthopedic referrals from the University of Texas Health at Tyler was analyzed using machine learning models built on Base General Embeddings (BGE) for semantic extraction. To ensure real-world applicability, noise tolerance experiments were conducted, and oversampling techniques were employed to mitigate class imbalance. The selected optimum and parsimonious embedding model demonstrated high predictive accuracy (ROC-AUC: 0.874, Matthews Correlation Coefficient (MCC): 0.540), effectively distinguishing patients requiring surgical intervention. Dimensionality reduction techniques confirmed the model's ability to capture meaningful clinical relationships. A threshold sensitivity analysis identified an optimal decision threshold (0.30) to balance precision and recall, maximizing referral efficiency. In the predictive modeling analysis, the procedure rate increased from 11.27% to an optimal 60.1%, representing a 433% improvement with significant implications for operational efficiency and healthcare revenue. The results of our study demonstrate that referral optimization can enhance primary and surgical care integration. Through this approach, precise and timely predictions of procedural requirements can be made, thereby minimizing delays, improving surgical planning, and reducing administrative burdens. In addition, the findings highlight the potential of clinical decision support as a scalable solution for improving patient outcomes and the efficiency of the healthcare system.
Related papers
- A Hybrid Data-Driven Approach For Analyzing And Predicting Inpatient Length Of Stay In Health Centre [0.0]
The study proposes an all-encompassing framework for the optimization of patient flow.
Using a comprehensive dataset of 2.3 million de-identified patient records, we analyzed demographics, diagnoses, treatments, services, costs, and charges.
Our model predicts patient length of stay (LoS) upon admission using supervised learning algorithms.
arXiv Detail & Related papers (2025-01-30T18:01:48Z) - Advancing clinical trial outcomes using deep learning and predictive modelling: bridging precision medicine and patient-centered care [0.0]
Deep learning and predictive modelling have emerged as transformative tools for optimizing clinical trial design, patient recruitment, and real-time monitoring.
This study explores the application of deep learning techniques, such as convolutional neural networks [CNNs] and transformerbased models, to stratify patients.
Predictive modelling approaches, including survival analysis and time-series forecasting, are employed to predict trial outcomes, enhancing efficiency and reducing trial failure rates.
arXiv Detail & Related papers (2024-12-09T23:20:08Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk.
Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources.
We implemented six machine learning models using the MIMIC-III database.
arXiv Detail & Related papers (2024-08-02T09:44:18Z) - Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
This study aims to use heart rate variability (HRV) features to develop an effective predictive model for sepsis detection.
A neural network model is trained on the HRV features, achieving an F1 score of 0.805, a precision of 0.851, and a recall of 0.763.
arXiv Detail & Related papers (2024-08-01T01:47:29Z) - Application of Machine Learning Algorithms in Classifying Postoperative Success in Metabolic Bariatric Surgery: A Comprehensive Study [0.32985979395737786]
This study presents a novel machine learning approach to classify patients in the context of metabolic bariatric surgery.
Various machine learning models, including GaussianNB, ComplementNB, KNN, Decision Tree, KNN with RandomOverSampler, and KNN with SMOTE, were applied to a dataset of 73 patients.
arXiv Detail & Related papers (2024-03-29T11:27:37Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
Crises like the COVID-19 pandemic pose a serious challenge to health-care institutions.
BaBSim.Hospital is a tool for capacity planning based on discrete event simulation.
We aim to investigate and optimize these parameters to improve BaBSim.Hospital.
arXiv Detail & Related papers (2021-05-16T12:38:35Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.