論文の概要: Eye on the Target: Eye Tracking Meets Rodent Tracking
- arxiv url: http://arxiv.org/abs/2503.10305v1
- Date: Thu, 13 Mar 2025 12:27:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:52:46.795408
- Title: Eye on the Target: Eye Tracking Meets Rodent Tracking
- Title(参考訳): Eye on the Target: 視線追跡と歯列追跡
- Authors: Emil Mededovic, Yuli Wu, Henning Konermann, Marcin Kopaczka, Mareike Schulz, Rene Tolba, Johannes Stegmaier,
- Abstract要約: 本稿では,Aria メガネからの視線追跡データを用いて,プロンプトポイントを生成する新しいパイプラインを提案する。
処理後処理を適用してプロンプトを洗練し,セグメンテーションの品質を向上する。
- 参考スコア(独自算出の注目度): 1.2526269920788646
- License:
- Abstract: Analyzing animal behavior from video recordings is crucial for scientific research, yet manual annotation remains labor-intensive and prone to subjectivity. Efficient segmentation methods are needed to automate this process while maintaining high accuracy. In this work, we propose a novel pipeline that utilizes eye-tracking data from Aria glasses to generate prompt points, which are then used to produce segmentation masks via a fast zero-shot segmentation model. Additionally, we apply post-processing to refine the prompts, leading to improved segmentation quality. Through our approach, we demonstrate that combining eye-tracking-based annotation with smart prompt refinement can enhance segmentation accuracy, achieving an improvement of 70.6% from 38.8 to 66.2 in the Jaccard Index for segmentation results in the rats dataset.
- Abstract(参考訳): ビデオ記録から動物行動を分析することは科学的研究にとって重要であるが、手動のアノテーションは労働集約的で主観的傾向が強い。
高い精度を維持しつつ、このプロセスを自動化するために効率的なセグメンテーション方法が必要である。
本研究では,Aria メガネからの視線追跡データを用いてプロンプトポイントを生成し,高速ゼロショットセグメンテーションモデルを用いてセグメンテーションマスクを生成する新しいパイプラインを提案する。
さらに,プロンプトを改良するために後処理を適用し,セグメンテーションの品質が向上する。
提案手法により,視線追跡に基づくアノテーションとスマートプロンプトリファインメントを併用することでセグメンテーションの精度が向上し,Jaccard Indexの38.8から66.2に70.6%向上し,ラットデータセットのセグメンテーション結果が得られた。
関連論文リスト
- Processing and Segmentation of Human Teeth from 2D Images using Weakly
Supervised Learning [1.6385815610837167]
そこで本研究では,手動アノテーションの必要性を低減するために,歯のセグメンテーションに対する弱教師付きアプローチを提案する。
本手法は,キーポイント検出ネットワークからの出力ヒートマップと中間特徴マップを用いて,セグメント化プロセスの導出を行う。
本手法は, 実際の歯科応用において, 歯のセグメンテーションに費用対効果, 効率のよいソリューションを提供する。
論文 参考訳(メタデータ) (2023-11-13T15:25:55Z) - Novel Deep Learning Framework For Bovine Iris Segmentation [0.0]
本稿では,BovineAAEyes80公開データセットを用いた画素ワイドセグメンテーションのための新しいディープラーニングフレームワークを提案する。
実験では、VGG16のバックボーンを持つU-Netがエンコーダとデコーダモデルの最良の組み合わせとして選ばれ、99.50%の精度と98.35%のDice係数スコアを示した。
論文 参考訳(メタデータ) (2022-12-22T01:15:08Z) - Meta Mask Correction for Nuclei Segmentation in Histopathological Image [5.36728433027615]
ノイズマスクを用いたデータを活用するメタラーニングに基づく新しい原子分割法を提案する。
具体的には,ごく少量のクリーンなメタデータを用いてノイズマスクを修正可能な,従来のメタモデルの設計を行う。
提案手法は, 最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-11-24T13:53:35Z) - EdgeFlow: Achieving Practical Interactive Segmentation with Edge-Guided
Flow [5.696221390328458]
We propose EdgeFlow, a novel architecture that fully use a interactive information of user clicks with edge-guided flow。
提案手法は,後処理や反復最適化の手法を使わずに,最先端の性能を実現する。
提案手法により,実用的なデータアノテーションタスクのための効率的な対話型セグメンテーションツールを開発した。
論文 参考訳(メタデータ) (2021-09-20T10:07:07Z) - Video Annotation for Visual Tracking via Selection and Refinement [74.08109740917122]
ビデオシーケンスのバウンディングボックスアノテーションを容易にするための新しいフレームワークを提案する。
目標位置の時間的コヒーレンスを捉えることのできる時間的アセスメントネットワークを提案する。
また、選択したトラッキング結果をさらに強化するために、ビジュアルジオメトリ・リファインメント・ネットワークが設計されている。
論文 参考訳(メタデータ) (2021-08-09T05:56:47Z) - Target-Aware Object Discovery and Association for Unsupervised Video
Multi-Object Segmentation [79.6596425920849]
本稿では,教師なしビデオマルチオブジェクトセグメンテーションの課題について述べる。
より正確で効率的な時間区分のための新しいアプローチを紹介します。
DAVIS$_17$とYouTube-VISに対する提案手法を評価した結果,セグメント化精度と推論速度の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-04-10T14:39:44Z) - Rethinking Interactive Image Segmentation: Feature Space Annotation [68.8204255655161]
本稿では,特徴空間投影による複数画像からの対話的・同時セグメントアノテーションを提案する。
本手法は,前景セグメンテーションデータセットにおける最先端手法の精度を上回ることができることを示す。
論文 参考訳(メタデータ) (2021-01-12T10:13:35Z) - Towards End-to-end Video-based Eye-Tracking [50.0630362419371]
画像のみから視線を推定することは、観察不可能な人固有の要因のために難しい課題である。
本稿では,これらの意味的関係と時間的関係を明確に学習することを目的とした,新しいデータセットとアタッチメント手法を提案する。
視覚刺激からの情報と視線画像の融合が,文献に記録された人物と同じような性能を達成することにつながることを実証した。
論文 参考訳(メタデータ) (2020-07-26T12:39:15Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - NINEPINS: Nuclei Instance Segmentation with Point Annotations [2.19221864553448]
本稿では,ポイントアノテーションから自動生成される擬似ラベルセグメンテーションを用いたサンプルセグメンテーションのアルゴリズムを提案する。
生成されたセグメンテーションマスクを用いて、提案手法は、インスタンスセグメンテーションを実現するために、HoVer-Netモデルの修正版を訓練する。
実験結果から,提案手法はポイントアノテーションの不正確性に対して頑健であり,完全注釈付きインスタンスマスクを用いたHover-Netと比較すると,セグメンテーション性能の劣化が必ずしも組織分類などの高次タスクの劣化を意味するとは限らないことが示唆された。
論文 参考訳(メタデータ) (2020-06-24T08:28:52Z) - Naive-Student: Leveraging Semi-Supervised Learning in Video Sequences
for Urban Scene Segmentation [57.68890534164427]
本研究では,未ラベル映像シーケンスと追加画像の半教師付き学習を利用して,都市景観セグメンテーションの性能を向上させることができるかどうかを問う。
我々は単にラベルのないデータに対して擬似ラベルを予測し、人間の注釈付きデータと擬似ラベル付きデータの両方でその後のモデルを訓練する。
我々のNaive-Studentモデルは、このような単純で効果的な反復的半教師付き学習で訓練され、3つのCityscapesベンチマークで最先端の結果を得る。
論文 参考訳(メタデータ) (2020-05-20T18:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。