論文の概要: Enhancing Facial Privacy Protection via Weakening Diffusion Purification
- arxiv url: http://arxiv.org/abs/2503.10350v1
- Date: Thu, 13 Mar 2025 13:27:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:52:45.041344
- Title: Enhancing Facial Privacy Protection via Weakening Diffusion Purification
- Title(参考訳): 乳化拡散浄化による顔のプライバシー保護の強化
- Authors: Ali Salar, Qing Liu, Yingli Tian, Guoying Zhao,
- Abstract要約: ソーシャルメディアは個々の肖像画を広く共有し、深刻なプライバシーリスクを生じさせている。
近年の手法では、拡散モデルを用いて、プライバシー保護のための対向顔画像を生成する。
本研究では,非条件埋め込みを学習し,対向的修正のための学習能力を向上させることを提案する。
我々は、元の画像と生成された画像の間の構造的一貫性を維持するために、アイデンティティ保存構造を統合する。
- 参考スコア(独自算出の注目度): 36.33027625681024
- License:
- Abstract: The rapid growth of social media has led to the widespread sharing of individual portrait images, which pose serious privacy risks due to the capabilities of automatic face recognition (AFR) systems for mass surveillance. Hence, protecting facial privacy against unauthorized AFR systems is essential. Inspired by the generation capability of the emerging diffusion models, recent methods employ diffusion models to generate adversarial face images for privacy protection. However, they suffer from the diffusion purification effect, leading to a low protection success rate (PSR). In this paper, we first propose learning unconditional embeddings to increase the learning capacity for adversarial modifications and then use them to guide the modification of the adversarial latent code to weaken the diffusion purification effect. Moreover, we integrate an identity-preserving structure to maintain structural consistency between the original and generated images, allowing human observers to recognize the generated image as having the same identity as the original. Extensive experiments conducted on two public datasets, i.e., CelebA-HQ and LADN, demonstrate the superiority of our approach. The protected faces generated by our method outperform those produced by existing facial privacy protection approaches in terms of transferability and natural appearance.
- Abstract(参考訳): ソーシャルメディアの急速な成長により、個々の肖像画が広く共有されるようになり、大量監視のための自動顔認証システム(AFR)の能力により、深刻なプライバシー上のリスクが生じる。
したがって、認証されていないAFRシステムから顔のプライバシーを保護することが不可欠である。
新興拡散モデルの生成能力に触発されて、近年の手法では拡散モデルを用いて、プライバシ保護のための対向顔画像を生成する。
しかし、拡散浄化効果に悩まされ、保護成功率(PSR)が低くなる。
本稿では,まず,非条件埋め込みの学習能力向上のための学習法を提案し,それを用いて,敵の潜伏符号の修正を誘導し,拡散浄化効果を弱める。
さらに、元の画像と生成された画像との間の構造的整合性を維持するためにアイデンティティ保存構造を統合し、人間の観察者が生成した画像が元のものと同一のアイデンティティを持つと認識できるようにする。
CelebA-HQとLADNの2つの公開データセットで実施された大規模な実験は、我々のアプローチの優位性を実証している。
提案手法により生成した保護顔は、転送性や自然な外観の点で、既存の顔認識保護アプローチよりも優れていた。
関連論文リスト
- Transferable Adversarial Facial Images for Privacy Protection [15.211743719312613]
視覚的品質を維持しつつ、転送性を改善した新しい顔プライバシー保護方式を提案する。
生成モデルの潜在空間をトラバースするために,まずグローバルな逆潜時探索を利用する。
次に、視覚的アイデンティティ情報を保存するための重要なランドマーク正規化モジュールを導入する。
論文 参考訳(メタデータ) (2024-07-18T02:16:11Z) - DiffAM: Diffusion-based Adversarial Makeup Transfer for Facial Privacy Protection [60.73609509756533]
DiffAMは、基準画像から対向的な化粧を施した高品質な顔画像を生成するための新しいアプローチである。
実験の結果、DiffAMはブラックボックス設定で12.98%上昇し、視覚的品質の向上と攻撃の成功率の向上を実現している。
論文 参考訳(メタデータ) (2024-05-16T08:05:36Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - DiffProtect: Generate Adversarial Examples with Diffusion Models for
Facial Privacy Protection [64.77548539959501]
DiffProtectは最先端の方法よりも自然に見える暗号化画像を生成する。
例えば、CelebA-HQとFFHQのデータセットで24.5%と25.1%の絶対的な改善が達成されている。
論文 参考訳(メタデータ) (2023-05-23T02:45:49Z) - Attribute-Guided Encryption with Facial Texture Masking [64.77548539959501]
本稿では,顔認識システムからユーザを保護するために,顔テクスチャマスキングを用いた属性ガイド暗号化を提案する。
提案手法は,最先端の手法よりも自然な画像を生成する。
論文 参考訳(メタデータ) (2023-05-22T23:50:43Z) - Protecting Facial Privacy: Generating Adversarial Identity Masks via
Style-robust Makeup Transfer [24.25863892897547]
対向性化粧品転写GAN(AMT-GAN)は、対向性化粧品の顔画像構築を目的とした新しい顔保護法である。
本稿では,新しい正規化モジュールを導入するとともに,化粧品の移動における対向雑音とサイクル構成損失との矛盾を解消するための共同トレーニング戦略を導入する。
論文 参考訳(メタデータ) (2022-03-07T03:56:17Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。