論文の概要: Diffusion-based Adversarial Identity Manipulation for Facial Privacy Protection
- arxiv url: http://arxiv.org/abs/2504.21646v1
- Date: Wed, 30 Apr 2025 13:49:59 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-05-02 15:57:16.89182
- Title: Diffusion-based Adversarial Identity Manipulation for Facial Privacy Protection
- Title(参考訳): 拡散に基づく顔のプライバシー保護のための敵対的アイデンティティ操作
- Authors: Liqin Wang, Qianyue Hu, Wei Lu, Xiangyang Luo,
- Abstract要約: 顔認識は、ソーシャルネットワーク上での不正な監視とユーザー追跡によって、深刻なプライバシー上の懸念を引き起こしている。
既存のプライバシーを強化する方法は、顔のプライバシーを保護する自然な顔画像を生成するのに失敗する。
そこで我々はDiffAIMを提案し、悪意のあるFRシステムに対して自然かつ高度に伝達可能な対向顔を生成する。
- 参考スコア(独自算出の注目度): 14.797807196805607
- License:
- Abstract: The success of face recognition (FR) systems has led to serious privacy concerns due to potential unauthorized surveillance and user tracking on social networks. Existing methods for enhancing privacy fail to generate natural face images that can protect facial privacy. In this paper, we propose diffusion-based adversarial identity manipulation (DiffAIM) to generate natural and highly transferable adversarial faces against malicious FR systems. To be specific, we manipulate facial identity within the low-dimensional latent space of a diffusion model. This involves iteratively injecting gradient-based adversarial identity guidance during the reverse diffusion process, progressively steering the generation toward the desired adversarial faces. The guidance is optimized for identity convergence towards a target while promoting semantic divergence from the source, facilitating effective impersonation while maintaining visual naturalness. We further incorporate structure-preserving regularization to preserve facial structure consistency during manipulation. Extensive experiments on both face verification and identification tasks demonstrate that compared with the state-of-the-art, DiffAIM achieves stronger black-box attack transferability while maintaining superior visual quality. We also demonstrate the effectiveness of the proposed approach for commercial FR APIs, including Face++ and Aliyun.
- Abstract(参考訳): 顔認識(FR)システムの成功は、ソーシャルネットワーク上での不正な監視とユーザー追跡によって、深刻なプライバシー上の懸念を引き起こしている。
既存のプライバシーを強化する方法は、顔のプライバシーを保護する自然な顔画像を生成するのに失敗する。
本稿では,拡散型対位法(DiffAIM)を用いて,悪意のあるFRシステムに対して,自然かつ高度に伝達可能な対位法を提案する。
具体的には,拡散モデルの低次元潜在空間における顔の同一性を操作する。
これは、逆拡散過程において、勾配に基づく逆正当性誘導を反復的に注入し、所望の逆向性面に向けて生成を段階的に操る。
このガイダンスは、ターゲットに対するアイデンティティの収束に最適化され、ソースからのセマンティックなばらつきを促進しながら、視覚的自然性を維持しながら効果的な偽造を促進する。
さらに,操作時の顔の構造の整合性を維持するために,構造保存正規化を取り入れた。
DiffAIMは、顔認証と識別タスクの両方の大規模な実験により、最先端技術と比較して、より優れた視覚的品質を維持しながら、より強力なブラックボックス攻撃伝達性を達成することを示した。
また、Face++やAliyunを含む商用FR APIに対する提案手法の有効性を実証する。
関連論文リスト
- Enhancing Facial Privacy Protection via Weakening Diffusion Purification [36.33027625681024]
ソーシャルメディアは個々の肖像画を広く共有し、深刻なプライバシーリスクを生じさせている。
近年の手法では、拡散モデルを用いて、プライバシー保護のための対向顔画像を生成する。
本研究では,非条件埋め込みを学習し,対向的修正のための学習能力を向上させることを提案する。
我々は、元の画像と生成された画像の間の構造的一貫性を維持するために、アイデンティティ保存構造を統合する。
論文 参考訳(メタデータ) (2025-03-13T13:27:53Z) - iFADIT: Invertible Face Anonymization via Disentangled Identity Transform [51.123936665445356]
顔の匿名化は、個人のプライバシーを保護するために顔の視覚的アイデンティティを隠すことを目的としている。
Invertible Face Anonymization の頭字語 iFADIT を Disentangled Identity Transform を用いて提案する。
論文 参考訳(メタデータ) (2025-01-08T10:08:09Z) - ID-Guard: A Universal Framework for Combating Facial Manipulation via Breaking Identification [60.73617868629575]
深層学習に基づく顔操作の誤用は、公民権に重大な脅威をもたらす。
この不正行為を防止するため、操作過程を妨害する積極的な防御法が提案されている。
本稿では,IDガード(ID-Guard)と呼ばれる顔の操作に対処するための普遍的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-20T09:30:08Z) - Transferable Adversarial Facial Images for Privacy Protection [15.211743719312613]
視覚的品質を維持しつつ、転送性を改善した新しい顔プライバシー保護方式を提案する。
生成モデルの潜在空間をトラバースするために,まずグローバルな逆潜時探索を利用する。
次に、視覚的アイデンティティ情報を保存するための重要なランドマーク正規化モジュールを導入する。
論文 参考訳(メタデータ) (2024-07-18T02:16:11Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - DiffProtect: Generate Adversarial Examples with Diffusion Models for
Facial Privacy Protection [64.77548539959501]
DiffProtectは最先端の方法よりも自然に見える暗号化画像を生成する。
例えば、CelebA-HQとFFHQのデータセットで24.5%と25.1%の絶対的な改善が達成されている。
論文 参考訳(メタデータ) (2023-05-23T02:45:49Z) - Attribute-Guided Encryption with Facial Texture Masking [64.77548539959501]
本稿では,顔認識システムからユーザを保護するために,顔テクスチャマスキングを用いた属性ガイド暗号化を提案する。
提案手法は,最先端の手法よりも自然な画像を生成する。
論文 参考訳(メタデータ) (2023-05-22T23:50:43Z) - DuetFace: Collaborative Privacy-Preserving Face Recognition via Channel
Splitting in the Frequency Domain [23.4606547767188]
DuetFaceは、周波数領域における協調推論を利用するプライバシー保護の顔認識手法である。
提案手法は、保護されていないArcFaceと同等の認識精度とコストを達成し、最先端のプライバシ保存手法より優れている。
論文 参考訳(メタデータ) (2022-07-15T08:35:44Z) - Protecting Facial Privacy: Generating Adversarial Identity Masks via
Style-robust Makeup Transfer [24.25863892897547]
対向性化粧品転写GAN(AMT-GAN)は、対向性化粧品の顔画像構築を目的とした新しい顔保護法である。
本稿では,新しい正規化モジュールを導入するとともに,化粧品の移動における対向雑音とサイクル構成損失との矛盾を解消するための共同トレーニング戦略を導入する。
論文 参考訳(メタデータ) (2022-03-07T03:56:17Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。