論文の概要: Improving Medical Waste Classification with Hybrid Capsule Networks
- arxiv url: http://arxiv.org/abs/2503.10426v1
- Date: Thu, 13 Mar 2025 14:49:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:54:14.744790
- Title: Improving Medical Waste Classification with Hybrid Capsule Networks
- Title(参考訳): ハイブリッドカプセルネットワークによる医療廃棄物の分類の改善
- Authors: Bennet van den Broek, Javad Pourmostafa Roshan Sharami,
- Abstract要約: 医療廃棄物の不適切な処理は、環境と公衆衛生の深刻なリスクを引き起こす。
我々は, 医療廃棄物の分類を改善するために, カプセルネットワークと事前訓練したDenseNetモデルの統合について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The improper disposal and mismanagement of medical waste pose severe environmental and public health risks, contributing to greenhouse gas emissions and the spread of infectious diseases. Efficient and accurate medical waste classification is crucial for mitigating these risks. We explore the integration of capsule networks with a pretrained DenseNet model to improve medical waste classification. To the best of our knowledge, capsule networks have not yet been applied to this task, making this study the first to assess their effectiveness. A diverse dataset of medical waste images collected from multiple public sources, is used to evaluate three model configurations: (1) a pretrained DenseNet model as a baseline, (2) a pretrained DenseNet with frozen layers combined with a capsule network, and (3) a pretrained DenseNet with unfrozen layers combined with a capsule network. Experimental results demonstrate that incorporating capsule networks improves classification performance, with F1 scores increasing from 0.89 (baseline) to 0.92 (hybrid model with unfrozen layers). This highlights the potential of capsule networks to address the spatial limitations of traditional convolutional models and improve classification robustness. While the capsule-enhanced model demonstrated improved classification performance, direct comparisons with prior studies were challenging due to differences in dataset size and diversity. Previous studies relied on smaller, domain-specific datasets, which inherently yielded higher accuracy. In contrast, our study employs a significantly larger and more diverse dataset, leading to better generalization but introducing additional classification challenges. This highlights the trade-off between dataset complexity and model performance.
- Abstract(参考訳): 医療廃棄物の不適切な処理と管理ミスは、環境と公衆衛生の深刻なリスクをもたらし、温室効果ガスの排出と感染症の拡散に寄与する。
医療廃棄物の効率的かつ正確な分類は、これらのリスクを軽減するために不可欠である。
我々は, 医療廃棄物の分類を改善するために, カプセルネットワークと事前訓練したDenseNetモデルの統合について検討する。
我々の知る限りでは、カプセルネットワークはこの課題にまだ適用されていないため、この研究は、その効果を初めて評価する。
複数の公共資源から収集された医療廃棄物画像の多種多様なデータセットを用いて,(1)事前学習DenseNetモデルをベースラインとして,(2)凍結層をカプセルネットワークと組み合わせた事前学習DenseNetと,(3)未凍結層をカプセルネットワークと組み合わせた事前学習DenseNetの3つのモデル構成を評価する。
実験の結果、カプセルネットワークを組み込むことで分類性能が向上し、F1スコアは0.89(ベースライン)から0.92(凍結層を持つハイブリッドモデル)に増加した。
このことは、従来の畳み込みモデルの空間的制限に対処し、分類の堅牢性を改善するカプセルネットワークの可能性を強調している。
カプセル強化モデルでは分類性能が向上したが,データセットサイズと多様性の違いにより,先行研究と直接比較は困難であった。
それまでの研究は、ドメイン固有のより小さなデータセットに頼っていた。
対照的に、我々の研究はより大きく、より多様なデータセットを採用しており、より一般化され、さらに分類の課題がもたらされる。
これは、データセットの複雑さとモデルパフォーマンスのトレードオフを強調します。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion [0.1935997508026988]
我々は,ヒト非小細胞肺癌の悪性度を規定するセグメンテーションモデル(DRU-Net)を提案している。
我々は提案したモデルを作成するために2つのデータセット(ノルウェーの肺がんバイオバンクとHaukeland大学肺がんコホート)を使用した。
提案した空間拡張法(マルチレンズ歪み)により,ネットワーク性能は3%向上した。
論文 参考訳(メタデータ) (2024-06-20T13:14:00Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - A Hybrid Convolutional Neural Network with Meta Feature Learning for
Abnormality Detection in Wireless Capsule Endoscopy Images [8.744537620217674]
無線カプセル内視鏡画像における異常検出のためのハイブリッド畳み込みニューラルネットワークを提案する。
3つの並列畳み込みニューラルネットワークで構成され、それぞれに特有の特徴学習能力がある。
ネットワークトリオは、クラス内の分散を効果的に処理し、胃腸の異常を効率的に検出する。
論文 参考訳(メタデータ) (2022-07-20T09:25:57Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - ReCasNet: Improving consistency within the two-stage mitosis detection
framework [5.263015177621435]
既存のアプローチでは、潜在的な有糸分裂細胞の位置を特定するための検出ステージと、予測信頼性を精査するための分類ステージという、2段階のパイプラインが使用されている。
このパイプライン定式化は、検出段階の予測品質の低下と、トレーニングデータ分布のミスマッチによる分類段階の不整合につながる可能性がある。
Refine Cascade Network(ReCasNet)は,先述した問題を3つの改善で軽減する,拡張されたディープラーニングパイプラインである。
論文 参考訳(メタデータ) (2022-02-28T16:03:14Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Multiclass Burn Wound Image Classification Using Deep Convolutional
Neural Networks [0.0]
創傷専門家が管理プロトコルのより正確な診断と最適化を可能にするためには、継続的な創傷監視が重要です。
本研究では, 深層学習による傷傷画像の分類を, 傷の状況に応じて2、3つのカテゴリに分類する。
論文 参考訳(メタデータ) (2021-03-01T23:54:18Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。