論文の概要: OODD: Test-time Out-of-Distribution Detection with Dynamic Dictionary
- arxiv url: http://arxiv.org/abs/2503.10468v1
- Date: Thu, 13 Mar 2025 15:41:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:54:13.561348
- Title: OODD: Test-time Out-of-Distribution Detection with Dynamic Dictionary
- Title(参考訳): OODD:動的辞書を用いたテストタイムアウトオブディストリビューション検出
- Authors: Yifeng Yang, Lin Zhu, Zewen Sun, Hengyu Liu, Qinying Gu, Nanyang Ye,
- Abstract要約: ディープラーニングモデルでは、アウト・オブ・ディストリビューション(OOD)検出が依然として難しい。
我々は,OOD辞書を微調整なしで動的に保守・更新する新しいテスト時間OOD検出手法OODDを提案する。
我々は,検出性能を維持しながら3倍の高速化を実現する,KNNベースのOOD検出フレームワークの最適化版を提案する。
- 参考スコア(独自算出の注目度): 10.19006278808466
- License:
- Abstract: Out-of-distribution (OOD) detection remains challenging for deep learning models, particularly when test-time OOD samples differ significantly from training outliers. We propose OODD, a novel test-time OOD detection method that dynamically maintains and updates an OOD dictionary without fine-tuning. Our approach leverages a priority queue-based dictionary that accumulates representative OOD features during testing, combined with an informative inlier sampling strategy for in-distribution (ID) samples. To ensure stable performance during early testing, we propose a dual OOD stabilization mechanism that leverages strategically generated outliers derived from ID data. To our best knowledge, extensive experiments on the OpenOOD benchmark demonstrate that OODD significantly outperforms existing methods, achieving a 26.0% improvement in FPR95 on CIFAR-100 Far OOD detection compared to the state-of-the-art approach. Furthermore, we present an optimized variant of the KNN-based OOD detection framework that achieves a 3x speedup while maintaining detection performance.
- Abstract(参考訳): ディープラーニングモデルでは、特にテストタイムのOODサンプルがトレーニングの外れ値と大きく異なる場合、アウト・オブ・ディストリビューション(OOD)検出は依然として困難である。
我々は,OOD辞書を微調整なしで動的に保守・更新する新しいテスト時間OOD検出手法OODDを提案する。
提案手法では,テスト中にOODの代表的な特徴を蓄積する優先度待ち行列型辞書と,in-distriion (ID) サンプルに対する情報的不整合サンプリング戦略を併用する。
早期テスト時の安定性能を確保するため,IDデータから得られた戦略的外部値を活用する2つのOOD安定化機構を提案する。
我々の知る限り、OpenOODベンチマークの広範な実験により、OODDは既存の手法よりも大幅に優れており、CIFAR-100 Far OOD検出におけるFPR95の26.0%の改善を実現している。
さらに,検出性能を維持しながら3倍の高速化を実現する,KNNベースのOOD検出フレームワークの最適化版を提案する。
関連論文リスト
- Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - Meta OOD Learning for Continuously Adaptive OOD Detection [38.28089655572316]
現代のディープラーニングアプリケーションには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
本稿では,CAOOD(Continuous Adaptive Out-of-distribution)検出という,新しい,より現実的な設定を提案する。
トレーニングプロセス中に優れたOOD検出モデルが学習されるように、学習適応図を設計し、メタOOD学習(MOL)を開発する。
論文 参考訳(メタデータ) (2023-09-21T01:05:45Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
オープンソースアプリケーションに機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
我々は、未ラベルのオンラインデータをテスト時に直接利用してOOD検出性能を向上させる、テスト時OOD検出と呼ばれる新しいパラダイムを導入する。
本稿では,入出力フィルタ,IDメモリバンク,意味的に一貫性のある目的からなる適応外乱最適化(AUTO)を提案する。
論文 参考訳(メタデータ) (2023-03-22T02:28:54Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
簡単な再構築手法を用いることで,OOD検出の性能が大幅に向上する可能性が示唆された。
我々は、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、マスケ画像モデリング(Masked Image Modeling)を採用する。
論文 参考訳(メタデータ) (2023-02-06T08:24:41Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD検出は、あらゆる産業規模のアプリケーションに対する信頼性の高い機械学習モデルの鍵となるコンポーネントである。
In-distribution(IND)データを用いて擬似OODサンプルを生成するPOORE-POORE-POSthoc pseudo-Ood Regularizationを提案する。
我々は3つの現実世界の対話システムに関する枠組みを広く評価し、OOD検出における新たな最先端技術を実現した。
論文 参考訳(メタデータ) (2022-10-17T14:32:02Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - Contrastive Training for Improved Out-of-Distribution Detection [36.61315534166451]
本稿では,OOD検出性能向上のためのコントラストトレーニングを提案する。
コントラストトレーニングは,多くのベンチマークにおいてOOD検出性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2020-07-10T18:40:37Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。