論文の概要: Contrastive Training for Improved Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2007.05566v1
- Date: Fri, 10 Jul 2020 18:40:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 21:14:37.925337
- Title: Contrastive Training for Improved Out-of-Distribution Detection
- Title(参考訳): アウトオブディストリビューション検出の改善を目的としたコントラストトレーニング
- Authors: Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert Stanforth, Vivek
Natarajan, Joseph R. Ledsam, Patricia MacWilliams, Pushmeet Kohli, Alan
Karthikesalingam, Simon Kohl, Taylan Cemgil, S. M. Ali Eslami and Olaf
Ronneberger
- Abstract要約: 本稿では,OOD検出性能向上のためのコントラストトレーニングを提案する。
コントラストトレーニングは,多くのベンチマークにおいてOOD検出性能を著しく向上させることを示す。
- 参考スコア(独自算出の注目度): 36.61315534166451
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reliable detection of out-of-distribution (OOD) inputs is increasingly
understood to be a precondition for deployment of machine learning systems.
This paper proposes and investigates the use of contrastive training to boost
OOD detection performance. Unlike leading methods for OOD detection, our
approach does not require access to examples labeled explicitly as OOD, which
can be difficult to collect in practice. We show in extensive experiments that
contrastive training significantly helps OOD detection performance on a number
of common benchmarks. By introducing and employing the Confusion Log
Probability (CLP) score, which quantifies the difficulty of the OOD detection
task by capturing the similarity of inlier and outlier datasets, we show that
our method especially improves performance in the `near OOD' classes -- a
particularly challenging setting for previous methods.
- Abstract(参考訳): 信頼性の高いood(out-of-distribution)インプットの検出は、機械学習システムのデプロイの前提条件として理解されている。
本稿では,OOD検出性能向上のためのコントラストトレーニングを提案する。
OOD検出の先行手法とは異なり,本手法ではOODを明示的にラベル付けした例にアクセスする必要はなく,実際に収集することは困難である。
コントラストトレーニングは,多くのベンチマークにおいてOOD検出性能を著しく向上させることを示す。
Inlier およびoutlier データセットの類似性を捉えることで OOD 検出タスクの難易度を定量化する Confusion Log Probability (CLP) スコアを導入,活用することにより,本手法が特に 'near OOD' クラスのパフォーマンスを向上させることを示す。
関連論文リスト
- Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
本稿では,非自明なOOD検出問題に対処するため,Margin bounded Confidence Scores (MaCS) と呼ばれる新しい手法を提案する。
MaCS は ID と OOD のスコアの差を拡大し、決定境界をよりコンパクトにする。
画像分類タスクのための様々なベンチマークデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-22T05:40:25Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
入力のよりリッチな表現を生成する最終完全連結層にクラスプロジェクションの摂動を導入する。
我々はOpenOODフレームワークの複数のベンチマークで最先端のOOD検出結果を得る。
論文 参考訳(メタデータ) (2024-05-27T13:38:28Z) - Can Pre-trained Networks Detect Familiar Out-of-Distribution Data? [37.36999826208225]
PT-OODが事前学習ネットワークのOOD検出性能に及ぼす影響について検討した。
特徴空間におけるPT-OODの低線形分離性はPT-OOD検出性能を著しく低下させることがわかった。
本稿では,大規模事前学習モデルに対する一意な解を提案する。
論文 参考訳(メタデータ) (2023-10-02T02:01:00Z) - Unsupervised Evaluation of Out-of-distribution Detection: A Data-centric
Perspective [55.45202687256175]
アウト・オブ・ディストリビューション(OOD)検出法は、個々のテストサンプルがイン・ディストリビューション(IND)なのかOODなのかという、試験対象の真実を持っていると仮定する。
本稿では,OOD検出における教師なし評価問題を初めて紹介する。
我々は,OOD検出性能の教師なし指標としてGscoreを計算する3つの方法を提案する。
論文 参考訳(メタデータ) (2023-02-16T13:34:35Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
簡単な再構築手法を用いることで,OOD検出の性能が大幅に向上する可能性が示唆された。
我々は、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、マスケ画像モデリング(Masked Image Modeling)を採用する。
論文 参考訳(メタデータ) (2023-02-06T08:24:41Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD検出は、あらゆる産業規模のアプリケーションに対する信頼性の高い機械学習モデルの鍵となるコンポーネントである。
In-distribution(IND)データを用いて擬似OODサンプルを生成するPOORE-POORE-POSthoc pseudo-Ood Regularizationを提案する。
我々は3つの現実世界の対話システムに関する枠組みを広く評価し、OOD検出における新たな最先端技術を実現した。
論文 参考訳(メタデータ) (2022-10-17T14:32:02Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
本研究の目的は,OOD検出手法の暗黙的なスコアリング機能を識別すると同時に,共通の目的を認識することである。
内分布と外分布の2値差はOOD検出問題のいくつかの異なる定式化と等価であることを示す。
また, 外乱露光で使用される信頼損失は, 理論上最適のスコアリング関数と非自明な方法で異なる暗黙的なスコアリング関数を持つことを示した。
論文 参考訳(メタデータ) (2022-06-20T16:32:49Z) - MOOD: Multi-level Out-of-distribution Detection [13.207044902083057]
異常な入力がデプロイ中にモデルが失敗するのを防ぐには、分散アウト・ディストリビューション(OOD)検出が不可欠です。
動的かつ効率的なOOD推論のための中間分類器出力を利用する,新しいフレームワークであるマルチレベルアウトオブディストリビューション検出MOODを提案する。
MOODは、競合するOOD検出性能を維持しながら、推論における最大71.05%の計算削減を実現します。
論文 参考訳(メタデータ) (2021-04-30T02:18:31Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。