Siamese Foundation Models for Crystal Structure Prediction
- URL: http://arxiv.org/abs/2503.10471v1
- Date: Thu, 13 Mar 2025 15:44:16 GMT
- Title: Siamese Foundation Models for Crystal Structure Prediction
- Authors: Liming Wu, Wenbing Huang, Rui Jiao, Jianxing Huang, Liwei Liu, Yipeng Zhou, Hao Sun, Yang Liu, Fuchun Sun, Yuxiang Ren, Jirong Wen,
- Abstract summary: Crystal Structure Prediction (CSP) aims to generate stable crystal structures from compositions.<n>CSP remains a relatively underexplored area.<n>We propose Siamese foundation models specifically designed to address CSP.
- Score: 70.63218101004398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crystal Structure Prediction (CSP), which aims to generate stable crystal structures from compositions, represents a critical pathway for discovering novel materials. While structure prediction tasks in other domains, such as proteins, have seen remarkable progress, CSP remains a relatively underexplored area due to the more complex geometries inherent in crystal structures. In this paper, we propose Siamese foundation models specifically designed to address CSP. Our pretrain-finetune framework, named DAO, comprises two complementary foundation models: DAO-G for structure generation and DAO-P for energy prediction. Experiments on CSP benchmarks (MP-20 and MPTS-52) demonstrate that our DAO-G significantly surpasses state-of-the-art (SOTA) methods across all metrics. Extensive ablation studies further confirm that DAO-G excels in generating diverse polymorphic structures, and the dataset relaxation and energy guidance provided by DAO-P are essential for enhancing DAO-G's performance. When applied to three real-world superconductors ($\text{CsV}_3\text{Sb}_5$, $ \text{Zr}_{16}\text{Rh}_8\text{O}_4$ and $\text{Zr}_{16}\text{Pd}_8\text{O}_4$) that are known to be challenging to analyze, our foundation models achieve accurate critical temperature predictions and structure generations. For instance, on $\text{CsV}_3\text{Sb}_5$, DAO-G generates a structure close to the experimental one with an RMSE of 0.0085; DAO-P predicts the $T_c$ value with high accuracy (2.26 K vs. the ground-truth value of 2.30 K). In contrast, conventional DFT calculators like Quantum Espresso only successfully derive the structure of the first superconductor within an acceptable time, while the RMSE is nearly 8 times larger, and the computation speed is more than 1000 times slower. These compelling results collectively highlight the potential of our approach for advancing materials science research and development.
Related papers
- Open Materials Generation with Stochastic Interpolants [14.939468363546384]
We introduce Open Materials Generation (OMG), a unifying framework for the generative design and discovery of crystalline materials.<n>OMG employs inorganic interpolants (SI) to bridge an arbitrary base distribution to the target distribution of crystals.<n>We benchmark OMG's performance on two tasks: Crystal Structure Prediction (CSP) for specified compositions, and 'de novo' generation (DNG) aimed at discovering stable, novel, and unique structures.
arXiv Detail & Related papers (2025-02-04T18:56:47Z) - deCIFer: Crystal Structure Prediction from Powder Diffraction Data using Autoregressive Language Models [1.231476564107544]
We introduce an autoregressive language model that performs crystal structure prediction (CSP) from powder diffraction data.<n>The presented model, deCIFer, generates crystal structures in the widely used Crystallographic Information File (CIF) format.<n>We train deCIFer on nearly 2.3M unique crystal structures and validate on diverse sets of PXRD patterns for characterizing challenging inorganic crystal systems.
arXiv Detail & Related papers (2025-02-04T10:09:47Z) - A Cartesian Encoding Graph Neural Network for Crystal Structures Property Prediction: Application to Thermal Ellipsoid Estimation [3.832124825311177]
In diffraction-based crystal structure analysis, thermal ellipsoids, quantified via Anisotropic Displacement Parameters (ADPs), are critical yet challenging to determine.<n>This paper introduces CartNet, a novel graph neural network (GNN) for efficiently predicting crystal properties by encoding atomic geometry into Cartesian coordinates alongside the crystal temperature.<n>CartNet significantly reduces computational costs and outperforms existing methods in ADP prediction by 10.87%, while delivering a 34.77% improvement over theoretical approaches.
arXiv Detail & Related papers (2025-01-30T14:24:03Z) - CrysAtom: Distributed Representation of Atoms for Crystal Property Prediction [0.0]
In material science literature, it is well-known that crystalline materials exhibit topological structures.
In this paper, we propose an unsupervised framework namely, CrysAtom, using untagged crystal data to generate dense vector representation of atoms.
arXiv Detail & Related papers (2024-09-07T06:58:55Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - dotears: Scalable, consistent DAG estimation using observational and
interventional data [1.220743263007369]
Causal gene regulatory networks can be represented by directed acyclic graph (DAG)
We present $texttdotears$ [doo-tairs], a continuous optimization framework to infer a single causal structure.
We show that $texttdotears$ is a provably consistent estimator of the true DAG under mild assumptions.
arXiv Detail & Related papers (2023-05-30T17:03:39Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGAN is a model with two central innovations.
A $beta$-variational autoencoder is incorporated into a hybrid GAN architecture.
A custom differentiable data augmentation scheme is developed specifically for this architecture.
arXiv Detail & Related papers (2023-02-17T08:49:09Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - RNA Secondary Structure Prediction By Learning Unrolled Algorithms [70.09461537906319]
In this paper, we propose an end-to-end deep learning model, called E2Efold, for RNA secondary structure prediction.
The key idea of E2Efold is to directly predict the RNA base-pairing matrix, and use an unrolled algorithm for constrained programming as the template for deep architectures to enforce constraints.
With comprehensive experiments on benchmark datasets, we demonstrate the superior performance of E2Efold.
arXiv Detail & Related papers (2020-02-13T23:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.