論文の概要: How Should We Evaluate Uncertainty in Accelerated MRI Reconstruction?
- arxiv url: http://arxiv.org/abs/2503.10527v1
- Date: Thu, 13 Mar 2025 16:34:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:50:56.408132
- Title: How Should We Evaluate Uncertainty in Accelerated MRI Reconstruction?
- Title(参考訳): MRIの高速化における不確かさの評価法
- Authors: Luca Trautmann, Peter Wijeratne, Itamar Ronen, Ivor Simpson,
- Abstract要約: 本研究は,再建の解剖学的変化に基づいて,再建の多様性を評価するための新しいアプローチを提案する。
SSIM や PSNR など,よく使用される品質指標のスコアが高いモデルでは,しかしながら,解剖学的尺度では,高いレベルのばらつきやバイアスが示されることが示されている。
- 参考スコア(独自算出の注目度): 1.124958340749622
- License:
- Abstract: Reconstructing accelerated MRI is an ill-posed problem. Machine learning has recently shown great promise at this task, but current approaches to quantifying uncertainty focus on measuring the variability in pixelwise intensity variation. Although these provide interpretable maps, they lack structural understanding and they do not have a clear relationship to how the data will be analysed subsequently. In this paper, we propose a new approach to evaluating reconstruction variability based on apparent anatomical changes in the reconstruction, which is more tightly related to common downstream tasks. We use image registration and segmentation to evaluate several common MRI reconstruction approaches, where uncertainty is measured via ensembling, for accelerated imaging. We demonstrate the intrinsic variability in reconstructed images and show that models with high scores on often used quality metrics such as SSIM and PSNR, can nonetheless display high levels of variance and bias in anatomical measures.
- Abstract(参考訳): MRIの再構築は不適切な問題である。
機械学習は近年,この課題において大きな可能性を秘めている。しかし,不確実性を定量化するための現在のアプローチは,画素方向の強度変化における可変性の測定に重点を置いている。
これらは解釈可能なマップを提供するが、構造的理解が欠如しており、その後のデータの分析方法と明確な関係は持たない。
本稿では,従来の下流作業とより密接な関係にある再建の解剖学的変化に基づいて,復元の多様性を評価するための新しいアプローチを提案する。
我々は画像登録とセグメンテーションを用いて、画像の高速化のためにアンサンブルによる不確実性を測定するいくつかの一般的なMRI再構成手法を評価する。
再構成画像の本質的変動を実証し,SSIMやPSNRなどの品質指標に高いスコアを持つモデルでは,解剖学的尺度では,高いレベルのばらつきやバイアスが示されることを示した。
関連論文リスト
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - Robust MRI Reconstruction by Smoothed Unrolling (SMUG) [17.391075587858058]
SMUG(Smoothed Unrolling)と呼ばれる新しい画像再構成フレームワークを提案する。
SMUGは、ランダムスムーシング(RS)に基づく頑健な学習アプローチを用いて、ディープアンローリングに基づくMRI再構成モデルを前進させる。
我々は,SMUGがMRI再建の堅牢性を向上させることを示し,様々な不安定源のセットについて述べる。
論文 参考訳(メタデータ) (2023-12-12T22:57:14Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - CL-MRI: Self-Supervised Contrastive Learning to Improve the Accuracy of Undersampled MRI Reconstruction [25.078280843551322]
コントラスト学習を用いた自己教師付き事前訓練手法を導入し,MRI画像再構成の精度を向上する。
本実験は, 各種加速度因子およびデータセットの再構成精度の向上を実証した。
論文 参考訳(メタデータ) (2023-06-01T10:29:58Z) - PixCUE -- Joint Uncertainty Estimation and Image Reconstruction in MRI
using Deep Pixel Classification [0.0]
画素分類フレームワークを用いたMRI再構成における不確実性を推定する手法を提案する。
提案手法は, 復元誤差と高い相関関係を持つ不確実性マップを生成することを実証する。
PixCUEはMRI再構成における不確実性を最小の計算コストで確実に推定できる。
論文 参考訳(メタデータ) (2023-02-28T22:26:18Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
我々は,モデル不連続な不確かさを定量化するベイズ変分フレームワークを提案する。
提案手法はMRIのアンダーサンプを用いた再建術の術後成績を示す。
論文 参考訳(メタデータ) (2021-02-12T18:08:14Z) - Joint reconstruction and bias field correction for undersampled MR
imaging [7.409376558513677]
k空間をMRIでアンサンプすることで、貴重な取得時間を節約できるが、結果として不適切な逆転問題が発生する。
ディープラーニングのスキームは、トレーニングデータと、テスト時に再構成される画像の違いに影響を受けやすい。
本研究は,再建問題のバイアス場に対する感度に対処し,再設計において明確にモデル化することを提案する。
論文 参考訳(メタデータ) (2020-07-26T12:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。