FedPCA: Noise-Robust Fair Federated Learning via Performance-Capacity Analysis
- URL: http://arxiv.org/abs/2503.10567v1
- Date: Thu, 13 Mar 2025 17:18:18 GMT
- Title: FedPCA: Noise-Robust Fair Federated Learning via Performance-Capacity Analysis
- Authors: Nannan Wu, Zengqiang Yan, Nong Sang, Li Yu, Chang Wen Chen,
- Abstract summary: FedPCA identifies mislabeled clients via a Gaussian Mixture Model on loss-dispersion pairs.<n>It applies fairness and robustness strategies in global aggregation and local training by adjusting client weights and selectively using reliable data.
- Score: 39.424995330773264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training a model that effectively handles both common and rare data-i.e., achieving performance fairness-is crucial in federated learning (FL). While existing fair FL methods have shown effectiveness, they remain vulnerable to mislabeled data. Ensuring robustness in fair FL is therefore essential. However, fairness and robustness inherently compete, which causes robust strategies to hinder fairness. In this paper, we attribute this competition to the homogeneity in loss patterns exhibited by rare and mislabeled data clients, preventing existing loss-based fair and robust FL methods from effectively distinguishing and handling these two distinct client types. To address this, we propose performance-capacity analysis, which jointly considers model performance on each client and its capacity to handle the dataset, measured by loss and a newly introduced feature dispersion score. This allows mislabeled clients to be identified by their significantly deviated performance relative to capacity while preserving rare data clients. Building on this, we introduce FedPCA, an FL method that robustly achieves fairness. FedPCA first identifies mislabeled clients via a Gaussian Mixture Model on loss-dispersion pairs, then applies fairness and robustness strategies in global aggregation and local training by adjusting client weights and selectively using reliable data. Extensive experiments on three datasets demonstrate FedPCA's effectiveness in tackling this complex challenge. Code will be publicly available upon acceptance.
Related papers
- FedEFC: Federated Learning Using Enhanced Forward Correction Against Noisy Labels [5.885238773559016]
Federated Learning (FL) is a powerful framework for privacy-preserving distributed learning.
handling noisy labels in FL remains a major challenge due to heterogeneous data distributions and communication constraints.
We propose FedEFC, a novel method designed to tackle the impact of noisy labels in FL.
arXiv Detail & Related papers (2025-04-08T02:14:50Z) - Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.<n>We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.<n>Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - PUFFLE: Balancing Privacy, Utility, and Fairness in Federated Learning [2.8304839563562436]
Training and deploying Machine Learning models that simultaneously adhere to principles of fairness and privacy poses a significant challenge.
We introduce PUFFLE, a high-level parameterised approach that can help in the exploration of the balance between utility, privacy, and fairness in FL scenarios.
We prove that PUFFLE can be effective across diverse datasets, models, and data distributions, reducing the model unfairness up to 75%, with a maximum reduction in the utility of 17% in the worst-case scenario.
arXiv Detail & Related papers (2024-07-21T17:22:18Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - FedVal: Different good or different bad in federated learning [9.558549875692808]
Federated learning (FL) systems are susceptible to attacks from malicious actors.
FL poses new challenges in addressing group bias, such as ensuring fair performance for different demographic groups.
Traditional methods used to address such biases require centralized access to the data, which FL systems do not have.
We present a novel approach FedVal for both robustness and fairness that does not require any additional information from clients.
arXiv Detail & Related papers (2023-06-06T22:11:13Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Uncertainty Minimization for Personalized Federated Semi-Supervised
Learning [15.123493340717303]
We propose a novel semi-supervised learning paradigm which allows partial-labeled or unlabeled clients to seek labeling assistance from data-related clients (helper agents)
Experiments show that our proposed method can obtain superior performance and more stable convergence than other related works with partial labeled data.
arXiv Detail & Related papers (2022-05-05T04:41:27Z) - FedPrune: Towards Inclusive Federated Learning [1.308951527147782]
Federated learning (FL) is a distributed learning technique that trains a shared model over distributed data in a privacy-preserving manner.
We propose FedPrune; a system that tackles this challenge by pruning the global model for slow clients based on their device characteristics.
By using insights from Central Limit Theorem, FedPrune incorporates a new aggregation technique that achieves robust performance over non-IID data.
arXiv Detail & Related papers (2021-10-27T06:33:38Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
Federated learning provides a communication-efficient and privacy-preserving training process.
Standard federated learning techniques that naively minimize an average loss function are vulnerable to data corruptions.
We propose Auto-weighted Robust Federated Learning (arfl) to provide robustness against corrupted data sources.
arXiv Detail & Related papers (2021-01-14T21:54:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.