PUFFLE: Balancing Privacy, Utility, and Fairness in Federated Learning
- URL: http://arxiv.org/abs/2407.15224v1
- Date: Sun, 21 Jul 2024 17:22:18 GMT
- Title: PUFFLE: Balancing Privacy, Utility, and Fairness in Federated Learning
- Authors: Luca Corbucci, Mikko A Heikkila, David Solans Noguero, Anna Monreale, Nicolas Kourtellis,
- Abstract summary: Training and deploying Machine Learning models that simultaneously adhere to principles of fairness and privacy poses a significant challenge.
We introduce PUFFLE, a high-level parameterised approach that can help in the exploration of the balance between utility, privacy, and fairness in FL scenarios.
We prove that PUFFLE can be effective across diverse datasets, models, and data distributions, reducing the model unfairness up to 75%, with a maximum reduction in the utility of 17% in the worst-case scenario.
- Score: 2.8304839563562436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training and deploying Machine Learning models that simultaneously adhere to principles of fairness and privacy while ensuring good utility poses a significant challenge. The interplay between these three factors of trustworthiness is frequently underestimated and remains insufficiently explored. Consequently, many efforts focus on ensuring only two of these factors, neglecting one in the process. The decentralization of the datasets and the variations in distributions among the clients exacerbate the complexity of achieving this ethical trade-off in the context of Federated Learning (FL). For the first time in FL literature, we address these three factors of trustworthiness. We introduce PUFFLE, a high-level parameterised approach that can help in the exploration of the balance between utility, privacy, and fairness in FL scenarios. We prove that PUFFLE can be effective across diverse datasets, models, and data distributions, reducing the model unfairness up to 75%, with a maximum reduction in the utility of 17% in the worst-case scenario, while maintaining strict privacy guarantees during the FL training.
Related papers
- Enabling Trustworthy Federated Learning in Industrial IoT: Bridging the Gap Between Interpretability and Robustness [4.200214709723945]
Federated Learning (FL) is a paradigm shift in machine learning, allowing collaborative model training while keeping data localized.
The essence of FL in IIoT lies in its ability to learn from diverse, distributed data sources without requiring central data storage.
This article focuses on enabling trustworthy FL in IIoT by bridging the gap between interpretability and robustness.
arXiv Detail & Related papers (2024-09-01T15:13:39Z) - Distribution-Free Fair Federated Learning with Small Samples [54.63321245634712]
FedFaiREE is a post-processing algorithm developed specifically for distribution-free fair learning in decentralized settings with small samples.
We provide rigorous theoretical guarantees for both fairness and accuracy, and our experimental results further provide robust empirical validation for our proposed method.
arXiv Detail & Related papers (2024-02-25T17:37:53Z) - FedFDP: Fairness-Aware Federated Learning with Differential Privacy [21.55903748640851]
Federated learning (FL) is a new machine learning paradigm to overcome the challenge of data silos.
We first propose a fairness-aware federated learning algorithm, termed FedFair.
We then introduce differential privacy protection to form the FedFDP algorithm to address the trade-offs among fairness, privacy protection, and model performance.
arXiv Detail & Related papers (2024-02-25T08:35:21Z) - Multi-dimensional Fair Federated Learning [25.07463977553212]
Federated learning (FL) has emerged as a promising collaborative and secure paradigm for training a model from decentralized data.
Group fairness and client fairness are two dimensions of fairness that are important for FL.
We propose a method, called mFairFL, to achieve group fairness and client fairness simultaneously.
arXiv Detail & Related papers (2023-12-09T11:37:30Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Fairness-aware Federated Minimax Optimization with Convergence Guarantee [10.727328530242461]
Federated learning (FL) has garnered considerable attention due to its privacy-preserving feature.
The lack of freedom in managing user data can lead to group fairness issues, where models are biased towards sensitive factors such as race or gender.
This paper proposes a novel algorithm, fair federated averaging with augmented Lagrangian method (FFALM), designed explicitly to address group fairness issues in FL.
arXiv Detail & Related papers (2023-07-10T08:45:58Z) - FedVal: Different good or different bad in federated learning [9.558549875692808]
Federated learning (FL) systems are susceptible to attacks from malicious actors.
FL poses new challenges in addressing group bias, such as ensuring fair performance for different demographic groups.
Traditional methods used to address such biases require centralized access to the data, which FL systems do not have.
We present a novel approach FedVal for both robustness and fairness that does not require any additional information from clients.
arXiv Detail & Related papers (2023-06-06T22:11:13Z) - Federated Learning with Privacy-Preserving Ensemble Attention
Distillation [63.39442596910485]
Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized.
We propose a privacy-preserving FL framework leveraging unlabeled public data for one-way offline knowledge distillation.
Our technique uses decentralized and heterogeneous local data like existing FL approaches, but more importantly, it significantly reduces the risk of privacy leakage.
arXiv Detail & Related papers (2022-10-16T06:44:46Z) - Towards Federated Long-Tailed Learning [76.50892783088702]
Data privacy and class imbalance are the norm rather than the exception in many machine learning tasks.
Recent attempts have been launched to, on one side, address the problem of learning from pervasive private data, and on the other side, learn from long-tailed data.
This paper focuses on learning with long-tailed (LT) data distributions under the context of the popular privacy-preserved federated learning (FL) framework.
arXiv Detail & Related papers (2022-06-30T02:34:22Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
Federated learning (FL) emerges as a popular distributed learning schema that learns from a set of participating users without requiring raw data to be shared.
adversarial training (AT) provides a sound solution for centralized learning, extending its usage for FL users has imposed significant challenges.
We show that existing FL techniques cannot effectively propagate adversarial robustness among non-iid users.
We propose a simple yet effective propagation approach that transfers robustness through carefully designed batch-normalization statistics.
arXiv Detail & Related papers (2021-06-18T15:52:33Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.