Uncertainty in Action: Confidence Elicitation in Embodied Agents
- URL: http://arxiv.org/abs/2503.10628v1
- Date: Thu, 13 Mar 2025 17:59:41 GMT
- Title: Uncertainty in Action: Confidence Elicitation in Embodied Agents
- Authors: Tianjiao Yu, Vedant Shah, Muntasir Wahed, Kiet A. Nguyen, Adheesh Juvekar, Tal August, Ismini Lourentzou,
- Abstract summary: We present the first work investigating embodied confidence elicitation in open-ended multimodal environments.<n>We introduce Elicitation Policies, which structure confidence assessment across inductive, deductive, and abductive reasoning.<n>We show that structured reasoning approaches, such as Chain-of-Thoughts, improve confidence calibration.
- Score: 7.180871428121812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Expressing confidence is challenging for embodied agents navigating dynamic multimodal environments, where uncertainty arises from both perception and decision-making processes. We present the first work investigating embodied confidence elicitation in open-ended multimodal environments. We introduce Elicitation Policies, which structure confidence assessment across inductive, deductive, and abductive reasoning, along with Execution Policies, which enhance confidence calibration through scenario reinterpretation, action sampling, and hypothetical reasoning. Evaluating agents in calibration and failure prediction tasks within the Minecraft environment, we show that structured reasoning approaches, such as Chain-of-Thoughts, improve confidence calibration. However, our findings also reveal persistent challenges in distinguishing uncertainty, particularly under abductive settings, underscoring the need for more sophisticated embodied confidence elicitation methods.
Related papers
- SConU: Selective Conformal Uncertainty in Large Language Models [59.25881667640868]
We propose a novel approach termed Selective Conformal Uncertainty (SConU)
We develop two conformal p-values that are instrumental in determining whether a given sample deviates from the uncertainty distribution of the calibration set at a specific manageable risk level.
Our approach not only facilitates rigorous management of miscoverage rates across both single-domain and interdisciplinary contexts, but also enhances the efficiency of predictions.
arXiv Detail & Related papers (2025-04-19T03:01:45Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - InternalInspector $I^2$: Robust Confidence Estimation in LLMs through Internal States [44.78029091831383]
InternalInspector is a framework designed to enhance confidence estimation in Large Language Models (LLMs)
Unlike existing methods that primarily focus on the final activation state, InternalInspector conducts a comprehensive analysis across all internal states of every layer to accurately identify both correct and incorrect prediction processes.
arXiv Detail & Related papers (2024-06-17T19:46:05Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
We introduce the concept of Confidence-Probability Alignment.
We probe the alignment between models' internal and expressed confidence.
Among the models analyzed, OpenAI's GPT-4 showed the strongest confidence-probability alignment.
arXiv Detail & Related papers (2024-05-25T15:42:04Z) - When to Trust LLMs: Aligning Confidence with Response Quality [49.371218210305656]
We propose CONfidence-Quality-ORDer-preserving alignment approach (CONQORD)
It integrates quality reward and order-preserving alignment reward functions.
Experiments demonstrate that CONQORD significantly improves the alignment performance between confidence and response accuracy.
arXiv Detail & Related papers (2024-04-26T09:42:46Z) - Think Twice Before Trusting: Self-Detection for Large Language Models through Comprehensive Answer Reflection [90.71323430635593]
We propose a novel self-detection paradigm that considers the comprehensive answer space beyond LLM-generated answers.
Building upon this paradigm, we introduce a two-step framework, which firstly instructs LLM to reflect and provide justifications for each candidate answer.
This framework can be seamlessly integrated with existing approaches for superior self-detection.
arXiv Detail & Related papers (2024-03-15T02:38:26Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Trust, but Verify: Using Self-Supervised Probing to Improve
Trustworthiness [29.320691367586004]
We introduce a new approach of self-supervised probing, which enables us to check and mitigate the overconfidence issue for a trained model.
We provide a simple yet effective framework, which can be flexibly applied to existing trustworthiness-related methods in a plug-and-play manner.
arXiv Detail & Related papers (2023-02-06T08:57:20Z) - Uncertainty Quantification for Competency Assessment of Autonomous
Agents [3.3517146652431378]
autonomous agents must elicit appropriate levels of trust from human users.
One method to build trust is to have agents assess and communicate their own competencies for performing given tasks.
We show how ensembles of deep generative models can be used to quantify the agent's aleatoric and epistemic uncertainties.
arXiv Detail & Related papers (2022-06-21T17:35:13Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
We investigate confidence estimation for end-to-end automatic speech recognition (ASR)
We provide an extensive benchmark of popular confidence methods on four well-known speech datasets.
Our results suggest a strong baseline can be obtained by scaling the logits by a learnt temperature.
arXiv Detail & Related papers (2021-01-14T09:51:59Z) - Reliable Off-policy Evaluation for Reinforcement Learning [53.486680020852724]
In a sequential decision-making problem, off-policy evaluation estimates the expected cumulative reward of a target policy.
We propose a novel framework that provides robust and optimistic cumulative reward estimates using one or multiple logged data.
arXiv Detail & Related papers (2020-11-08T23:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.