Enhancing Retrieval for ESGLLM via ESG-CID -- A Disclosure Content Index Finetuning Dataset for Mapping GRI and ESRS
- URL: http://arxiv.org/abs/2503.10674v1
- Date: Mon, 10 Mar 2025 18:07:33 GMT
- Title: Enhancing Retrieval for ESGLLM via ESG-CID -- A Disclosure Content Index Finetuning Dataset for Mapping GRI and ESRS
- Authors: Shafiuddin Rehan Ahmed, Ankit Parag Shah, Quan Hung Tran, Vivek Khetan, Sukryool Kang, Ankit Mehta, Yujia Bao, Wei Wei,
- Abstract summary: Climate change has intensified the need for transparency and accountability in organizational practices.<n> Frameworks like the Global Reporting Initiative (GRI) and the new European Sustainability Reporting Standards (ESRS) aim to standardize ESG reporting.<n> generating comprehensive reports remains challenging due to the considerable length of ESG documents and variability in company reporting styles.
- Score: 15.217878978015856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate change has intensified the need for transparency and accountability in organizational practices, making Environmental, Social, and Governance (ESG) reporting increasingly crucial. Frameworks like the Global Reporting Initiative (GRI) and the new European Sustainability Reporting Standards (ESRS) aim to standardize ESG reporting, yet generating comprehensive reports remains challenging due to the considerable length of ESG documents and variability in company reporting styles. To facilitate ESG report automation, Retrieval-Augmented Generation (RAG) systems can be employed, but their development is hindered by a lack of labeled data suitable for training retrieval models. In this paper, we leverage an underutilized source of weak supervision -- the disclosure content index found in past ESG reports -- to create a comprehensive dataset, ESG-CID, for both GRI and ESRS standards. By extracting mappings between specific disclosure requirements and corresponding report sections, and refining them using a Large Language Model as a judge, we generate a robust training and evaluation set. We benchmark popular embedding models on this dataset and show that fine-tuning BERT-based models can outperform commercial embeddings and leading public models, even under temporal data splits for cross-report style transfer from GRI to ESRS
Related papers
- Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.<n>With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance.<n> Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks [0.0]
Relation Extraction (RE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs)
Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area.
This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach.
arXiv Detail & Related papers (2024-06-20T21:27:57Z) - Advanced Unstructured Data Processing for ESG Reports: A Methodology for
Structured Transformation and Enhanced Analysis [20.038120319271773]
This study introduces an innovative methodology to transform ESG reports into structured, analyzable formats.
Our approach offers high-precision text cleaning, adept identification and extraction of text from images, and standardization of tables within these reports.
This research marks a substantial contribution to the fields of industrial ecology and corporate sustainability assessment.
arXiv Detail & Related papers (2024-01-04T06:26:59Z) - ESGReveal: An LLM-based approach for extracting structured data from ESG
reports [5.467389155759699]
ESGReveal is an innovative method proposed for efficiently extracting and analyzing Environmental, Social, and Governance (ESG) data from corporate reports.
This approach utilizes Large Language Models (LLM) enhanced with Retrieval Augmented Generation (RAG) techniques.
Its efficacy was appraised using ESG reports from 166 companies across various sectors listed on the Hong Kong Stock Exchange in 2022.
arXiv Detail & Related papers (2023-12-25T06:44:32Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
Existing PTLM-based models for TSC can be categorized into two groups: 1) fine-tuning-based models that adopt PTLM as the context encoder; 2) prompting-based models that transfer the classification task to the text/word generation task.
We present a new perspective of leveraging PTLM for TSC: simultaneously leveraging the merits of both language modeling and explicit target-context interactions via contextual target attributes.
arXiv Detail & Related papers (2023-12-21T11:45:28Z) - Glitter or Gold? Deriving Structured Insights from Sustainability
Reports via Large Language Models [16.231171704561714]
This study uses Information Extraction (IE) methods to extract structured insights related to ESG aspects from companies' sustainability reports.
We then leverage graph-based representations to conduct statistical analyses concerning the extracted insights.
arXiv Detail & Related papers (2023-10-09T11:34:41Z) - Federated Generalized Category Discovery [68.35420359523329]
Generalized category discovery (GCD) aims at grouping unlabeled samples from known and unknown classes.
To meet the recent decentralization trend in the community, we introduce a practical yet challenging task, namely Federated GCD (Fed-GCD)
The goal of Fed-GCD is to train a generic GCD model by client collaboration under the privacy-protected constraint.
arXiv Detail & Related papers (2023-05-23T14:27:41Z) - ESGBERT: Language Model to Help with Classification Tasks Related to
Companies Environmental, Social, and Governance Practices [0.0]
Non-financial factors such as environmental, social, and governance (ESG) are attracting attention from investors.
We see a need for sophisticated NLP techniques for classification tasks for ESG text.
We explore doing this by fine-tuning BERTs pre-trained weights using ESG specific text and then further fine-tuning the model for a classification task.
arXiv Detail & Related papers (2022-03-31T04:22:44Z) - Social Adaptive Module for Weakly-supervised Group Activity Recognition [143.68241396839062]
This paper presents a new task named weakly-supervised group activity recognition (GAR)
It differs from conventional GAR tasks in that only video-level labels are available, yet the important persons within each frame are not provided even in the training data.
This eases us to collect and annotate a large-scale NBA dataset and thus raise new challenges to GAR.
arXiv Detail & Related papers (2020-07-18T16:40:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.